MATLAB求解tsp问题时,当城市数量为50,迭代次数为1000,初始种群规模为200,交叉概率为0.1%,变异概率为0.1%,求结束bestmakebean
时间: 2024-03-19 07:42:27 浏览: 75
很抱歉,我作为一个语言模型AI,并没有实际的计算能力和数据存储能力,无法为您提供MATLAB求解TSP问题的具体结果。不过,我可以简单地介绍一下求解TSP问题的一般步骤和常用算法:
1. 确定问题的数据:城市坐标、距离矩阵等。
2. 定义适应度函数:根据问题的要求,设计一个函数来评估每个解的优劣程度。
3. 选择遗传算法作为求解TSP问题的方法之一。
4. 初始种群的生成:根据问题的数据,生成一定数量的初始解,作为种群的起点。
5. 交叉操作:通过交叉操作,将两个优秀的解合并成一个新的解,从而增加种群的多样性。
6. 变异操作:在新解中引入随机性,从而增加种群的多样性。
7. 选择操作:根据适应度函数的值,选择优秀的解作为下一代的种群。
8. 重复以上步骤,直到满足结束条件为止。
在实际求解TSP问题时,需要根据具体的问题情况进行参数的调整。希望这些信息可以对您有所帮助。
相关问题
%%%%遗传算法求解TSP问题%%%%%%%%%%%%%%%%%%%%%%%%%%% clc clear close all load cityposition1.mat X=cityposition1; %城市位置坐标 D=Distance(X); %生成距离矩阵 N=size(X,1); %城市个数 %% %遗传参数 NIND=100; %种群大小 MAXGEN=200; %最大遗传代数 Pc=0.9; %交叉概率 Pm=0.05; %变异概率 GGAP=0.9; %代沟 %% %初始化种群 Chrom=InitPop(NIND,N); %% %画出随机解的路径图 DrawPath(Chrom(1,:),X) pause(0.1) %% %输出随机解的路径和总距离 disp('初始种群中的一个随机值:') Outputpath(Chrom(1,:)); Rlength=Pathlength(D,Chrom(1,:)); disp(['总距离:',num2str(Rlength)]); disp('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') %% %优化 gen=0; figure; hold on; box on; xlim([0,MAXGEN]) title('优化过程') xlabel('代数') ylabel('最优值') ObjV=Pathlength(D,Chrom); PreObjV=min(ObjV); while gen<MAXGEN %%计算适应度 ObjV=Pathlength(D,Chrom); line([gen-1,gen],[PreObjV,min(ObjV)]); pause(0.0001) PreObjV=min(ObjV); FitnV=Fitness(ObjV); %%选择 SelCh=Select1(Chrom,FitnV); %%交叉 SelCh=Recombin(SelCh,Pc); %%变异 SelCh=Mutate(SelCh,Pm); %%逆转 SelCh=Reverse(SelCh,D); %%重新插入子代的新种群 Chrom=Reins(Chrom,SelCh,ObjV); %%更新迭代次数 gen=gen+1; end ObjV=Pathlength(D,Chrom); [minObjV,minTnd]=min(ObjV); DrawPath(Chrom(minTnd(1),:),X) %%输出最优解的路径和总距离 disp('最优解:') p=Outputpath(Chrom(minTnd(1),:)); disp(['总距离:',num2str(ObjV(minTnd(1)))]); disp('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
这是一个求解TSP问题的遗传算法的Matlab代码。代码中包含了初始化种群、计算适应度、选择、交叉、变异、逆转和重新插入等步骤,最终输出最优解的路径和总距离。以下是代码的解释:
1. 加载城市坐标数据
```matlab
load cityposition1.mat
X=cityposition1; %城市位置坐标
D=Distance(X); %生成距离矩阵
N=size(X,1); %城市个数
```
这段代码加载了一个城市坐标的数据,并根据坐标计算了城市之间的距离,以及城市的数量。
2. 初始化种群
```matlab
NIND=100; %种群大小
Chrom=InitPop(NIND,N); %初始化种群
```
这段代码初始化了种群,其中NIND是种群大小,Chrom是一个NIND* N的矩阵,每一行表示种群中一个个体的基因型(即城市的排列顺序)。
3. 画出随机解的路径图
```matlab
DrawPath(Chrom(1,:),X) %画出随机解的路径图
pause(0.1)
```
这段代码使用DrawPath函数画出随机解的路径图,其中Chrom(1,:)表示种群中第一个个体的基因型,即城市的排列顺序,X表示城市的坐标。
4. 输出随机解的路径和总距离
```matlab
Outputpath(Chrom(1,:)); %输出随机解的路径
Rlength=Pathlength(D,Chrom(1,:)); %计算随机解的总距离
disp(['总距离:',num2str(Rlength)]);
```
这段代码使用Outputpath函数输出随机解的路径,使用Pathlength函数计算随机解的总距离。
5. 遗传算法优化
```matlab
gen=0; %初始化代数
ObjV=Pathlength(D,Chrom); %计算适应度
PreObjV=min(ObjV);
while gen<MAXGEN
%%计算适应度
ObjV=Pathlength(D,Chrom);
line([gen-1,gen],[PreObjV,min(ObjV)]);
pause(0.0001)
PreObjV=min(ObjV);
FitnV=Fitness(ObjV);
%%选择
SelCh=Select1(Chrom,FitnV);
%%交叉
SelCh=Recombin(SelCh,Pc);
%%变异
SelCh=Mutate(SelCh,Pm);
%%逆转
SelCh=Reverse(SelCh,D);
%%重新插入子代的新种群
Chrom=Reins(Chrom,SelCh,ObjV);
%%更新迭代次数
gen=gen+1;
end
```
这段代码使用遗传算法进行优化,其中MAXGEN是最大遗传代数,FitnV是适应度向量,SelCh是选择出的新种群,Pc和Pm分别是交叉概率和变异概率,Reverse函数用于逆转某个个体的一段基因,Reins函数用于重新插入子代的新种群。
6. 输出最优解的路径和总距离
```matlab
ObjV=Pathlength(D,Chrom);
[minObjV,minTnd]=min(ObjV);
DrawPath(Chrom(minTnd(1),:),X) %画出最优解的路径图
p=Outputpath(Chrom(minTnd(1),:)); %输出最优解的路径
disp(['总距离:',num2str(ObjV(minTnd(1)))]);
```
这段代码使用Pathlength函数计算最优解的总距离,使用DrawPath函数画出最优解的路径图,使用Outputpath函数输出最优解的路径和总距离。
总的来说,这是一个完整的求解TSP问题的遗传算法实现,包括了种群初始化、适应度计算、选择、交叉、变异、逆转和重新插入等步骤。
遗传算法求解tsp问题matlab
遗传算法是一种常用于求解旅行商问题(TSP)的优化算法。以下是一个基于Matlab实现的遗传算法求解TSP问题的思路:
1. 初始化种群:生成随机的初始种群,每个个体代表一条路径。
2. 适应度函数:计算每个个体的适应度,即路径的总长度。
3. 选择操作:根据适应度选择优秀的个体,并进行交叉和变异操作产生新的个体。
4. 重复执行第2和第3步,直到达到最大迭代次数或者找到最优解。
以下是一个简单的Matlab代码实现:
```
% 参数设置
n = 10; % 城市数量
m = 50; % 种群大小
max_iter = 1000; % 最大迭代次数
pc = 0.8; % 交叉概率
pm = 0.1; % 变异概率
% 生成随机初始种群
pop = zeros(m, n);
for i = 1:m
pop(i,:) = randperm(n);
end
% 迭代求解
for iter = 1:max_iter
% 计算适应度
fitness = zeros(m, 1);
for i = 1:m
fitness(i) = tsp_distance(pop(i,:));
end
% 选择操作
[fitness, idx] = sort(fitness);
pop = pop(idx,:);
new_pop = zeros(m, n);
for i = 1:m
% 交叉操作
if rand() < pc
j = randi([1 m]);
while j == i
j = randi([1 m]);
end
[child1, child2] = tsp_crossover(pop(i,:), pop(j,:));
new_pop(i,:) = child1;
if i+1 <= m
new_pop(i+1,:) = child2;
end
% 变异操作
else
new_pop(i,:) = tsp_mutation(pop(i,:), pm);
end
end
% 更新种群
pop = new_pop;
end
% 输出最优解
[~, idx] = min(fitness);
best_path = pop(idx,:);
best_dist = fitness(idx);
disp(['Best distance: ', num2str(best_dist)]);
disp(best_path);
```
其中,`tsp_distance`函数计算路径的总长度,`tsp_crossover`函数进行交叉操作,`tsp_mutation`函数进行变异操作。你可以根据自己的需要修改这些函数的实现。
阅读全文