解释下面的代码void push(int val) { // 入栈操作 if (this->top == this->size - 1) { // 栈已满,抛出异常 throw "Stack is full"; } this->top++; this->data[this->top] = val; } int pop() { // 出栈操作 if (this->top == -1) { // 栈为空,抛出异常 throw "Stack is empty"; } int val = this->data[this->top]; this->top--; return val; } bool isEmpty() { // 判空操作 return this->top == -1; }

时间: 2024-02-14 21:20:01 浏览: 25
这段代码定义了一个栈的三个基本操作:入栈(push)、出栈(pop)和判空(isEmpty)。 1. 入栈操作:void push(int val) 该函数接受一个整数参数val,表示要入栈的元素。首先,判断栈是否已满,如果已满则抛出异常。如果栈未满,则将栈顶指针this->top加1,表示栈顶向上移动一位,然后将元素val存入新的栈顶位置this->data[this->top]中。 2. 出栈操作:int pop() 该函数不接受参数,其返回值为栈顶元素。首先,判断栈是否为空,如果为空则抛出异常。如果栈不为空,则先将栈顶元素this->data[this->top]存入变量val中,然后将栈顶指针this->top减1,表示栈顶向下移动一位。最后,将变量val作为函数的返回值返回。 3. 判空操作:bool isEmpty() 该函数不接受参数,其返回值为布尔类型。如果栈为空,则返回true;否则,返回false。 这三个基本操作是栈数据结构中最基础和常用的操作,可以满足大多数栈的应用场景。
相关问题

#include <iostream> #include <queue> #include<string> using namespace std; struct TreeNode { int val; TreeNode* left; TreeNode* right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; // 递归实现先序遍历 void preorderTraversal(TreeNode* root) { if (root) { cout << root->val << " "; preorderTraversal(root->left); preorderTraversal(root->right); } } // 非递归实现层次遍历 void levelOrderTraversal(TreeNode* root) { if (!root) { return; } queue<TreeNode*> q; q.push(root); while (!q.empty()) { TreeNode* cur = q.front(); q.pop(); cout << cur->val << " "; if (cur->left) { q.push(cur->left); } if (cur->right) { q.push(cur->right); } } } int main() { // 建立二叉树 TreeNode* root = new TreeNode(65); root->left = new TreeNode(66); root->right = new TreeNode(67); root->left->left = new TreeNode(68); root->left->right = new TreeNode(69); root->left->left->left = new TreeNode(72); root->left->right->right = new TreeNode(73); root->right->left = new TreeNode(70); root->right->right = new TreeNode(71); root->right->left->left = new TreeNode(74); // 先序遍历 cout << "Preorder Traversal: "; preorderTraversal(root); cout << endl; // 层次遍历 cout << "Level Order Traversal: "; levelOrderTraversal(root); cout << endl; return 0; }怎么将代码内节点的数字改成字母

要将节点的数字改成字母,可以将 TreeNode 结构体中的 val 成员变量改为 string 类型,并将节点的值赋为相应的字母。例如,将节点的数字 65 改为字母 A,将节点的数字 66 改为字母 B,以此类推,可以将代码修改如下: ``` #include <iostream> #include <queue> #include <string> using namespace std; struct TreeNode { string val; // 将节点的值从 int 类型改为 string 类型 TreeNode* left; TreeNode* right; TreeNode(string s) : val(s), left(NULL), right(NULL) {} // 将节点的值初始化为字符串类型 }; // 递归实现先序遍历 void preorderTraversal(TreeNode* root) { if (root) { cout << root->val << " "; preorderTraversal(root->left); preorderTraversal(root->right); } } // 非递归实现层次遍历 void levelOrderTraversal(TreeNode* root) { if (!root) { return; } queue<TreeNode*> q; q.push(root); while (!q.empty()) { TreeNode* cur = q.front(); q.pop(); cout << cur->val << " "; if (cur->left) { q.push(cur->left); } if (cur->right) { q.push(cur->right); } } } int main() { // 建立二叉树 TreeNode* root = new TreeNode("A"); // 将节点的值从数字改为字母 root->left = new TreeNode("B"); root->right = new TreeNode("C"); root->left->left = new TreeNode("D"); root->left->right = new TreeNode("E"); root->left->left->left = new TreeNode("H"); root->left->right->right = new TreeNode("I"); root->right->left = new TreeNode("F"); root->right->right = new TreeNode("G"); root->right->left->left = new TreeNode("J"); // 先序遍历 cout << "Preorder Traversal: "; preorderTraversal(root); cout << endl; // 层次遍历 cout << "Level Order Traversal: "; levelOrderTraversal(root); cout << endl; return 0; } ``` 这样就可以将节点的数字改成相应的字母了。

解释下面代码: //优先队列实现 void push(const T& val) { if (size >= capacity) { return; } data[size++] = val; int i = size - 1; while (i > 0) { int parent = (i - 1) / 2; if (data[i]->freq < data[parent]->freq) { swap(i, parent); i = parent; } else { break; } } } T top() const { if (size > 0) { return data[0]; } else { return nullptr; } } void pop() { if (size <= 0) { return; } data[0] = data[--size]; int i = 0; while (i < size) { int left = i * 2 + 1; int right = i * 2 + 2; int smallest = i; if (left < size && data[left]->freq < data[smallest]->freq) { smallest = left; } if (right < size && data[right]->freq < data[smallest]->freq) { smallest = right; } if (smallest != i) { swap(i, smallest); i = smallest; } else { break; } } }

这段代码实现了一个优先队列,其中 push() 方法用于将元素插入队列,top() 方法用于返回队列中最小的元素,pop() 方法用于将队列中最小的元素弹出。这个优先队列是使用数组来实现的,数组中存储的是元素的指针。在 push() 方法中,首先判断队列是否已满,如果已满则直接返回。如果队列未满,则将元素插入到数组的最后,然后通过循环将元素上移,直到满足堆的性质,即父节点的值小于等于子节点的值。在 top() 方法中,如果队列非空,则返回数组中第一个元素的指针,即最小的元素。如果队列为空,则返回空指针。在 pop() 方法中,首先判断队列是否为空,如果为空则直接返回。如果队列非空,则将数组中最后一个元素移动到第一个位置,并通过循环将元素下移,直到满足堆的性质。具体来说,每次将当前节点与其左右子节点中最小的节点进行比较,如果当前节点比左右子节点中最小的节点还要小,则将当前节点与左右子节点中最小的节点交换位置,然后将当前节点指向交换后的子节点,继续循环。如果当前节点比左右子节点中最小的节点还要大,则说明已经满足堆的性质,可以退出循环。

相关推荐

#include<iostream> using namespace std; #include <stack> // 定义树节点结构体 typedef struct TreeNode { char val;//数据域 TreeNode* left;//左孩子 TreeNode* right;//右孩子 }*Tree, TreeNode; void CreateTree(Tree& T) { char x; cin >> x; if (x =='*') { T = NULL; return; } else { T = new TreeNode; T->val = x; CreateTree(T->left); CreateTree(T->right); } } // 先序遍历二叉树 void preOrderTraversal(TreeNode* root) { if (root == NULL) return; cout << root->val << endl; preOrderTraversal(root->left); preOrderTraversal(root->right); } // 中序遍历二叉树 void inOrderTraversal(TreeNode* root) { if (root == NULL) return; inOrderTraversal(root->left); cout << root->val << endl; inOrderTraversal(root->right); } void inOrderS(TreeNode* root) { stack<TreeNode*> S; TreeNode *p = root; while (p || !S.empty()){ if(p->left){ S.push(p); p = p->left; } else{ cout << S.top()->val; p = S.top()->right; S.pop(); } } } // 后序遍历二叉树 void postOrderTraversal(TreeNode* root) { if (root == NULL) return; postOrderTraversal(root->left); postOrderTraversal(root->right); cout << root->val <<endl;} int main() { TreeNode* root = NULL; cout << "请输入二叉树的先序遍历序列,以*表示空节点" << endl; CreateTree(root); stack<int> S; //cout << "先序遍历结果为:"<< endl; //preOrderTraversal(root); cout << endl << "中序遍历结果为:" << endl; inOrderS(root); //cout << endl << "后序遍历结果为:" << endl; //postOrderTraversal(root); cout << endl; return 0; } 纠错

#include <iostream> #include <vector> #include <sstream> using namespace std; struct TreeNode { string val; TreeNode* left; TreeNode* right; TreeNode(string x) : val(x), left(nullptr), right(nullptr) {} }; TreeNode* buildTreeHelper(const vector<string>& preorder, int& pos, const string& sep) { if (pos >= preorder.size() || preorder[pos] == sep) { ++pos; return nullptr; } string s = preorder[pos]; ++pos; TreeNode* root = new TreeNode(s); root->left = buildTreeHelper(preorder, pos, sep); root->right = buildTreeHelper(preorder, pos, sep); return root; } TreeNode* buildTree(const vector<string>& preorder, const string& sep) { int pos = 0; return buildTreeHelper(preorder, pos, sep); } void preorder1(TreeNode* root) { if (!root) return; cout << root->val << ","; preorder1(root->left); preorder1(root->right); } void inorder(TreeNode* root) { if (!root) return; inorder(root->left); cout << root->val << ","; inorder(root->right); } void postorder(TreeNode* root) { if (!root) return; postorder(root->left); postorder(root->right); cout << root->val << ","; } int main() { string sep; getline(cin, sep); vector<string> preorder; string line; getline(cin, line); stringstream ss(line); string s; while (getline(ss, s, ' ')) { preorder.push_back(s); } TreeNode* root = buildTree(preorder, sep); cout << "Preorder: "; preorder1(root); cout << endl; cout << "Inorder: "; inorder(root); cout << endl; cout << "Postorder: "; postorder(root); cout << endl; return 0; }如何避免在输出序列最后多输出一个逗号

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不
recommend-type

怎么在集群安装安装hbase

您好,关于如何在集群上安装HBase,步骤大致如下: 1. 在HBase官网上下载最新版本的HBase,并解压到需要安装的目录下; 2. 配置HBase的环境变量:将HBase目录的bin子目录加入到PATH环境变量中; 3. 修改HBase配置文件:在HBase目录下的conf子目录中找到hbase-site.xml文件,并进行相应的配置,如指定HBase的Zookeeper节点等; 4. 启动HBase:使用HBase的bin目录下的start-hbase.sh脚本启动HBase; 5. 验证HBase是否正常运行:使用HBase自带的shell命令行工具操作HBase。 注意:以上步
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩