omp算法matlab代码
时间: 2024-03-03 12:46:23 浏览: 188
OMP(Orthogonal Matching Pursuit)算法是一种稀疏信号恢复算法,用于解决信号压缩感知和稀疏表示问题。下面是一个简单的OMP算法的Matlab代码示例:
```matlab
function [x_hat, support] = omp(A, y, K)
% 输入参数:
% A: 稀疏表示矩阵
% y: 观测信号向量
% K: 稀疏度
N = size(A, 2); % 字典矩阵A的列数
M = size(A, 1); % 字典矩阵A的行数
residual = y; % 初始化残差
support = []; % 初始化支持集
for k = 1:K
% 计算投影系数
projection = abs(A' * residual);
% 选择具有最大投影系数的原子
[~, index] = max(projection);
% 更新支持集
support = [support, index];
% 生成新的字典矩阵
A_hat = A(:, support);
% 最小二乘法求解稀疏表示
x_hat = pinv(A_hat) * y;
% 更新残差
residual = y - A_hat * x_hat;
end
end
```
这段代码实现了OMP算法,输入参数包括稀疏表示矩阵A、观测信号向量y和稀疏度K。算法首先初始化残差和支持集,然后通过迭代选择具有最大投影系数的原子,并更新支持集、生成新的字典矩阵、求解稀疏表示和更新残差。最终返回稀疏表示结果x_hat和支持集support。
阅读全文
相关推荐















