用python写一个基于pytorch的强化学习模型
时间: 2023-03-19 11:21:15 浏览: 151
基于python的强化学习算法
5星 · 资源好评率100%
好的,下面是一个使用Python编写的基于PyTorch的强化学习模型示例:
首先,需要安装PyTorch和其他必要的库。可以使用以下命令在Python中安装PyTorch:
```
pip install torch
```
接下来,导入必要的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import gym
```
定义一个神经网络模型,该模型将接收环境状态,并输出每个可能的行动的值。在这个例子中,我们使用两个全连接层和ReLU激活函数。最后一层输出的值是行动的Q值:
```python
class DQN(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim):
super().__init__()
self.fc1 = nn.Linear(state_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, action_dim)
def forward(self, x):
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = self.fc3(x)
return x
```
定义一个代理类,该类将实现强化学习代理的行为。在这个例子中,我们使用Deep Q-Network (DQN)算法:
```python
class DQNAgent:
def __init__(self, env, state_dim, action_dim, hidden_dim, lr, gamma, epsilon):
self.env = env
self.state_dim = state_dim
self.action_dim = action_dim
self.gamma = gamma
self.epsilon = epsilon
self.net = DQN(state_dim, action_dim, hidden_dim)
self.optimizer = optim.Adam(self.net.parameters(), lr=lr)
self.loss_fn = nn.MSELoss()
def act(self, state):
if torch.rand(1) < self.epsilon:
return self.env.action_space.sample()
else:
q_values = self.net(torch.FloatTensor(state))
_, action = torch.max(q_values, dim=0)
return action.item()
def learn(self, batch):
states, actions, rewards, next_states, dones = batch
q_values = self.net(torch.FloatTensor(states))
next_q_values = self.net(torch.FloatTensor(next_states))
target_q_values = q_values.clone()
for i in range(len(actions)):
target_q_values[i][actions[i]] = rewards[i] + self.gamma * torch.max(next_q_values[i]) * (1 - dones[i])
loss = self.loss_fn(q_values, target_q_values.detach())
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
```
最后,我们可以创建一个环境,初始化代理,并开始训练:
```python
env = gym.make('CartPole-v1')
agent = DQNAgent(env, env.observation_space.shape[0], env.action_space.n, 128, 1e-3, 0.99, 0.1)
for episode in range(1000):
state = env.reset()
done = False
total_reward = 0
while not done:
action = agent.act(state)
next_state, reward, done, info = env.step(action)
agent.learn((state, action, reward, next_state, done))
state = next_state
total_reward += reward
阅读全文