14. F ¼ getFeature(COM); // compute the features of each community 15. C’ ¼ k-means(COM,F); // cluster COM using k-means based on F 16. t ¼ getThreshold(C’); // compute the threshold t based on C’. 17. for each element of F, denoted as Fi do 18. if Fi < t then 19. remove COMi from COM, where Fi is derived from COMi 20. end if 21. end for 22. AMC ¼ getAMC(COM); // compute the AMC of each community 23. AMCmax ¼ getMAX(AMC); // get the maximum AMC 24. PPoints ¼ vertexes in the community corresponding to AMCmax;翻译成python代码
时间: 2024-03-26 11:40:16 浏览: 93
这段伪代码的主要功能是对社区进行聚类,并计算每个社区的特征和 AMC,然后根据 AMC 的最大值来选择一个社区。下面是一个示例 Python 代码来实现这个伪代码:
```python
from sklearn.cluster import KMeans
def getFeature(COM):
# 计算每个社区的特征
F = []
# ...
return F
def getThreshold(C):
# 根据聚类结果计算阈值
t = 0
# ...
return t
def removeCommunity(COM, F, t):
# 根据阈值移除一些社区
for i in range(len(F)):
if F[i] < t:
del COM[i]
del F[i]
def getAMC(COM):
# 计算每个社区的 AMC
AMC = []
# ...
return AMC
def getMax(AMC):
# 获取最大 AMC
return max(AMC)
def main(COM):
# compute the features of each community
F = getFeature(COM)
# cluster COM using k-means based on F
kmeans = KMeans(n_clusters=4).fit(F)
C_ = kmeans.labels_
# compute the threshold t based on C’
t = getThreshold(C_)
# remove some communities based on threshold t
removeCommunity(COM, F, t)
# compute the AMC of each community
AMC = getAMC(COM)
# get the maximum AMC
AMCmax = getMax(AMC)
# get the vertexes in the community corresponding to AMCmax
PPoints = []
for i in range(len(AMC)):
if AMC[i] == AMCmax:
PPoints.append(COM[i])
return PPoints
```
需要注意的是,这只是一种示例代码,实际应用中需要根据具体情况进行修改和优化。
阅读全文