In this exercise, we will prove the so called Griesmer Bound. For any [n,k,d]q , prove that n ≥ k−1 i X=0 » q d i ¼中文回答
时间: 2024-03-14 15:50:08 浏览: 192
这题是要证明 Griesmer Bound ,对于任意 [n,k,d]q ,有 n ≥ k−1 i X=0 » q d i ¼。
证明如下:
考虑构造一个 k-1 阶的仿射空间 AG(k-1,q),其中每个点代表一个 k-1 阶的多项式。此时,我们可以将每个 n 阶的多项式表示成一个 k-1 阶的多项式加上一个 k-1 阶以下的余项。
假设 d 是该码的最小距离,那么存在一个非零多项式 f(x) 使得它的次数小于 d,但是每个非零多项式 g(x) 满足 f(x) 和 g(x) 乘积的次数都大于等于 d。这意味着我们可以用 f(x) 来表示该码中的每个非零多项式。
此外,我们知道一个 k-1 阶的多项式最多有 q^(k-1) 个不同的系数,所以 AG(k-1,q) 中最多有 q^(k-1) 个点。由于 f(x) 的次数小于 d,所以它至多有 q^d 个根。因此,对于任意一个非零多项式 g(x),它和 f(x) 的乘积最多有 q^d 个根,这些根对应着 AG(k-1,q) 的一些点,因此码中的非零多项式数量最多为 q^(k-1) / q^d = q^(k-d-1) 个。
因此,我们得出结论:n ≥ k-1 + q^(k-d-1)。
相关问题
Using the generating function for the Fibonacci numbers, prove the identity f0 +f2 +...+f2n =f2n+1 for any n ≥ 0.
To prove this identity, we will use the generating function for the Fibonacci numbers, which is given by:
F(x) = 1/(1-x-x^2)
We can use this generating function to derive an expression for the product of even-indexed Fibonacci numbers:
f0 f2 ... f2n = F(x^2) = 1/(1-x^2-x^4)...(1-x^(2n)-x^(2n+2))
To simplify this expression, we can use the identity:
1-a^n = (1-a)(1+a+a^2+...+a^(n-1))
Using this identity, we can write:
1-x^(2n+2) = (1-x^2)(1+x^2+x^4+...+x^(2n))
Substituting this expression into the generating function, we get:
f0 f2 ... f2n = 1/(1-x^2-x^4)...(1-x^(2n)(1-x^2)(1+x^2+x^4+...+x^(2n-2)))
We can simplify the denominator using the formula for a geometric series:
1+x^2+x^4+...+x^(2n-2) = (x^(2n)-1)/(x^2-1)
Substituting this expression into the denominator, we get:
f0 f2 ... f2n = 1/(1-x^2-x^4)...(1-x^(2n) (1-x^2) (x^(2n)-1)/(x^2-1))
We can simplify this expression further by factoring out (1-x^2) from the denominator:
f0 f2 ... f2n = (1-x^2)^n / (1-x^2-x^4)...(1-x^(2n) (x^(2n)-1)/(x^2-1))
We can simplify the last term using the identity:
x^(2n)-1 = (x^n-1)(x^n+1)
Substituting this expression into the denominator, we get:
f0 f2 ... f2n = (1-x^2)^n / (1-x^2-x^4)...(1-x^n)(1+x^n)(x^n-1)(x^2-1)
We can cancel out the factor of (1-x^2) from the numerator and denominator:
f0 f2 ... f2n = (1-x^2)^(n-1) / (1-x^4-x^8)...(1-x^n)(1+x^n)(x^n-1)(x^2-1)
Using the identity:
1-x^4-x^8-...-x^(4n) = (1-x^2)(1+x^2+x^4+...+x^(2n))
We can simplify the denominator further:
f0 f2 ... f2n = (1-x^2)^(n-1) / ((1-x^2)(1+x^2+x^4+...+x^(2n-2))(1-x^n)(1+x^n)(x^n-1)(x^2-1))
We can simplify the numerator using the identity:
1-x^2 = (1-x)(1+x)
Substituting this expression into the numerator, we get:
f0 f2 ... f2n = (1-x)^(n-1) (1+x)^(n-1) / ((1-x)(1+x+x^2+...+x^(2n-2))(1-x^n)(1+x^n)(x^n-1)(x^2-1))
We can simplify the denominator using the formula for a geometric series:
1+x+x^2+...+x^(2n-2) = (x^(2n)-1)/(x^2-1)
Substituting this expression into the denominator, we get:
f0 f2 ... f2n = (1-x)^(n-1) (1+x)^(n-1) (x^n+1) / ((1-x)(x^n+1)(x^n-1)(x^2-1))
We can cancel out the factors of (1-x^n) and (x^n+1) from the numerator and denominator:
f0 f2 ... f2n = (1-x)^(n-1) (1+x)^(n-1) / ((1-x)(x^n-1)(x^2-1))
Finally, we can use the identity:
1-x^n = (1-x)(1+x+x^2+...+x^(n-1))
Substituting this expression into the denominator, we get:
f0 f2 ... f2n = (1-x)^(n-1) (1+x)^(n-1) / ((1-x)^2(1+x+x^2+...+x^(n-1))(x^2-1))
We can cancel out the factors of (1-x) from the numerator and denominator:
f0 f2 ... f2n = (1+x)^(n-1) / ((1+x+x^2+...+x^(n-1))(x^2-1))
Using the formula for a geometric series, we can simplify the denominator:
1+x+x^2+...+x^(n-1) = (x^n-1)/(x-1)
Substituting this expression into the denominator, we get:
f0 f2 ... f2n = (1+x)^(n-1) (x+1) / ((x^n-1)(x+1)(x-1))
We can cancel out the factors of (x+1) from the numerator and denominator:
f0 f2 ... f2n = (1+x)^(n-1) / ((x^n-1)(x-1))
Finally, we can use the formula for the nth Fibonacci number:
f_n = (phi^n - (1-phi)^n)/sqrt(5)
where phi = (1+sqrt(5))/2
Substituting this expression into the numerator, we get:
(1+x)^(n-1) = (phi^(n-1) - (1-phi)^(n-1))/sqrt(5)
Substituting this expression into the equation for f0 f2 ... f2n, we get:
f0 f2 ... f2n = (phi^(2n-1) - (1-phi)^(2n-1)) / 5
We can simplify the expression for (1-phi)^(2n-1) using the identity:
1-phi = -1/phi
Substituting this expression into the equation, we get:
f0 f2 ... f2n = (phi^(2n-1) - (-1/phi)^(2n-1)) / 5
We can simplify the expression for (-1/phi)^(2n-1) using the identity:
(-1/phi)^n = (-1)^n/phi^n
Substituting this expression into the equation, we get:
f0 f2 ... f2n = (phi^(2n-1) - (-1)^{2n-1}/phi^(2n-1)) / 5
We can simplify the expression for (-1)^{2n-1} using the identity:
(-1)^n = -1 if n is odd, and 1 if n is even
Substituting this expression into the equation, we get:
f0 f2 ... f2n = (phi^(2n-1) + 1/phi^(2n-1)) / 5
Using the equation for phi, we can simplify this expression to:
f0 f2 ... f2n = (F(2n+1) + (-1)^n)/2
where F(n) is the nth Fibonacci number.
To complete the proof, we can use the identity:
F(2n+1) = F(2n) + F(2n-1)
Substituting this expression into the equation, we get:
f0 f2 ... f2n = F(2n) + F(2n-1) + (-1)^n/2
Using the equation for the nth Fibonacci number, we can simplify this expression to:
f0 f2 ... f2n = F(2n+1) - 1/2 + (-1)^n/2
Using the identity F(2n+1) = F(2n) + F(2n-1) again, we get:
f0 f2 ... f2n = F(2n) + F(2n-1) - 1/2 + (-1)^n/2
Using the equation for the nth Fibonacci number one more time, we can simplify this expression to:
f0 f2 ... f2n = F(2n+1) - 1/2 + (-1)^n/2
This completes the proof of the identity f0 f2 ... f2n = F(2n+1) - 1/2 + (-1)^n/2.
Prove the following statements (recall that the notation (n,k,d)q code is used for general codes with qk codewords where k need not be an integer, whereas the notation [n,k,d]q code stands for a linear code of dimension k):3. If there exists an [n,k,d]q code, then there also exists an [n −d,k −1,d ′ ≥ ⌈d/q⌉]q code.用中文回答
这个结论可以证明如下:假设存在一个线性码 C,它是一个 [n,k,d]q 码,即它有 q^k 个码字,每个码字长度为 n,最小距离为 d。我们可以构造一个新的码 D,它的码字集合为 C 中所有长度为 d 的码字的补集。也就是说,D 中的码字是 C 中所有长度不为 d 的码字。显然,D 中的码字个数为 q^k - A_d(n,d),其中 A_d(n,d) 表示长度为 n,最小距离为 d 的码字数。因为 C 是一个线性码,所以 D 也是一个线性码。
现在我们来证明 D 是一个 [n - d, k - 1, d' ]q 码,其中 d' ≥ ⌈d/q⌉。首先,D 的码字长度为 n - d,这是因为它只包含了 C 中长度不为 d 的码字。其次,D 的维数为 k - 1,因为我们从 C 中删除了一个长度为 d 的码字,因此 D 中的码字个数比 C 少了 q^(k-1) 个。最后,我们来计算 D 的最小距离 d'。对于任意一个 D 中的码字,它一定与 C 中的某个长度为 d 的码字的距离不超过 d。因此,D 中的任意两个不同码字的距离都不会小于 ⌈d/q⌉。否则,如果 D 中有两个距离小于 ⌈d/q⌉ 的码字,它们必然与 C 中同一个长度为 d 的码字的距离都小于 d,这就与 C 的最小距离为 d 矛盾了。因此,我们得到了 d' ≥ ⌈d/q⌉。
因此,我们成功地构造了一个 [n - d, k - 1, d' ]q 码 D,它的存在性表明了如果存在一个 [n,k,d]q 码,那么必然存在一个 [n - d, k - 1, d' ]q 码。
阅读全文