K.set_learning_phase(0) base_model = DenseNet121(weights='imagenet', include_top=False, input_shape=(224, 224, 3), ) for layer in base_model.layers: layer.trainable=False K.set_learning_phase(1) x = base_model.output x = layers.GlobalMaxPooling2D()(x) x = layers.Dense(512, activation='relu', kernel_regularizer=regularizers.l2(0.0001))(x) x = layers.Dense(128, activation='relu', kernel_regularizer=regularizers.l2(0.0001))(x) predictions = layers.Dense(4, activation='softmax')(x) model = Model(inputs=base_model.input, outputs=predictions) model.summary()怎么在这段代码中加入动态卷积
时间: 2023-12-13 08:02:54 浏览: 162
要加入动态卷积,需要使用TensorFlow的函数式API来构建模型,并且使用tf.keras.layers.Layer创建自定义层。
下面是一个示例代码,它将动态卷积层添加到DenseNet121的顶部:
```python
import tensorflow as tf
from tensorflow.keras.applications import DenseNet121
from tensorflow.keras.layers import Layer, Input, GlobalMaxPooling2D, Dense
from tensorflow.keras.models import Model
from tensorflow.keras.regularizers import l2
class DynamicConv2D(Layer):
def __init__(self, filters, kernel_size, **kwargs):
super(DynamicConv2D, self).__init__(**kwargs)
self.filters = filters
self.kernel_size = kernel_size
def build(self, input_shape):
self.kernel = self.add_weight(name='kernel',
shape=(self.kernel_size, self.kernel_size, input_shape[-1], self.filters),
initializer='glorot_uniform',
trainable=True)
def call(self, inputs):
padding = (self.kernel_size - 1) // 2
padded_inputs = tf.pad(inputs, [[0, 0], [padding, padding], [padding, padding], [0, 0]], mode='CONSTANT')
conv_outputs = []
for i in range(-padding, padding+1):
for j in range(-padding, padding+1):
shift_inputs = tf.roll(padded_inputs, shift=[i, j], axis=[1, 2])
conv_outputs.append(tf.nn.conv2d(shift_inputs, self.kernel, strides=1, padding='VALID'))
output = tf.reduce_max(tf.stack(conv_outputs), axis=0)
return output
input_shape = (224, 224, 3)
inputs = Input(shape=input_shape)
base_model = DenseNet121(weights='imagenet', include_top=False, input_shape=input_shape)(inputs)
x = GlobalMaxPooling2D()(base_model)
x = Dense(512, activation='relu', kernel_regularizer=l2(0.0001))(x)
x = Dense(128, activation='relu', kernel_regularizer=l2(0.0001))(x)
x = DynamicConv2D(filters=64, kernel_size=3)(x) # 添加动态卷积层
predictions = Dense(4, activation='softmax')(x)
model = Model(inputs=inputs, outputs=predictions)
model.summary()
```
在上面的代码中,DynamicConv2D类定义了一个动态卷积层。在build()方法中,它创建一个可训练的卷积核。在call()方法中,它使用TensorFlow的tf.pad()函数将输入数据进行零填充,并使用tf.nn.conv2d()函数对每个方向的偏移量执行卷积操作。然后,它使用tf.reduce_max()函数将所有偏移量的卷积结果取最大值。
要在模型中使用DynamicConv2D层,只需要将其添加到模型中即可,如上面的代码所示。
阅读全文