创建javacv识别车牌实现项目
时间: 2023-08-02 16:16:29 浏览: 142
Computer-Vision-master.zip
要创建一个基于javacv的车牌识别项目,需要以下步骤:
1. 下载和安装OpenCV和javacv库
2. 导入javacv库到项目中,并添加到项目类路径下
3. 从视频或摄像头中获取图像帧
4. 对图像进行车牌检测和识别的预处理,包括图像灰度化、二值化、滤波等操作
5. 利用形态学运算处理车牌区域,去除不必要的细节和噪点
6. 对车牌字符进行分割,提取每个字符图像,并对每个字符进行识别
7. 将识别出的车牌字符组合成完整的车牌号码
以下是一个简单的代码示例,用于从摄像头获取图像并进行车牌识别:
```java
import org.bytedeco.javacpp.opencv_core;
import org.bytedeco.javacpp.opencv_imgcodecs;
import org.bytedeco.javacpp.opencv_imgproc;
import org.bytedeco.javacpp.opencv_videoio;
import org.bytedeco.javacpp.indexer.UByteIndexer;
public class LicensePlateRecognition {
public static void main(String[] args) {
// 初始化摄像头
opencv_videoio.VideoCapture camera = new opencv_videoio.VideoCapture(0);
// 读取模板图像
opencv_core.Mat templateImg = opencv_imgcodecs.imread("template.jpg");
while (true) {
// 从摄像头获取图像帧
opencv_core.Mat frame = new opencv_core.Mat();
camera.read(frame);
// 转换为灰度图像
opencv_core.Mat gray = new opencv_core.Mat();
opencv_imgproc.cvtColor(frame, gray, opencv_imgproc.COLOR_BGR2GRAY);
// 二值化
opencv_core.Mat binary = new opencv_core.Mat();
opencv_imgproc.threshold(gray, binary, 0, 255, opencv_imgproc.THRESH_BINARY_INV | opencv_imgproc.THRESH_OTSU);
// 形态学运算处理车牌区域
opencv_core.Mat kernel = opencv_imgproc.getStructuringElement(opencv_imgproc.MORPH_RECT, new opencv_core.Size(3, 3));
opencv_core.Mat morph = new opencv_core.Mat();
opencv_imgproc.morphologyEx(binary, morph, opencv_imgproc.MORPH_CLOSE, kernel);
// 查找轮廓
opencv_core.Mat contoursImg = frame.clone();
opencv_core.Mat contours = new opencv_core.Mat();
opencv_imgproc.findContours(morph, contours, new opencv_core.Mat(), opencv_imgproc.RETR_EXTERNAL, opencv_imgproc.CHAIN_APPROX_SIMPLE);
// 遍历轮廓,找到车牌区域
opencv_core.Rect plateRect = null;
for (int i = 0; i < contours.size(); i++) {
opencv_core.Mat contour = contours.get(i);
double area = opencv_imgproc.contourArea(contour);
if (area > 1000 && area < 10000) {
opencv_core.Rect rect = opencv_imgproc.boundingRect(contour);
double ratio = (double) rect.width() / rect.height();
if (ratio > 2 && ratio < 5) {
plateRect = rect;
opencv_imgproc.rectangle(contoursImg, plateRect, new opencv_core.Scalar(0, 255, 0), 2);
}
}
}
// 如果找到车牌区域
if (plateRect != null) {
// 提取车牌图像
opencv_core.Mat plateImg = gray.apply(plateRect);
// 调整车牌图像大小
opencv_core.Mat resizedPlateImg = new opencv_core.Mat();
opencv_imgproc.resize(plateImg, resizedPlateImg, new opencv_core.Size(136, 36));
// 与模板图像进行比对,找到最佳匹配的字符
int[] matchResults = new int[10];
for (int i = 0; i < 10; i++) {
opencv_core.Mat templateChar = templateImg.apply(new opencv_core.Rect(i * 14, 0, 14, 36));
opencv_core.Mat charImg = resizedPlateImg.apply(new opencv_core.Rect(i * 14, 0, 14, 36));
opencv_core.Mat diff = new opencv_core.Mat();
opencv_core.absdiff(templateChar, charImg, diff);
UByteIndexer diffIndexer = diff.createIndexer();
int matchValue = 0;
for (int y = 0; y < diff.rows(); y++) {
for (int x = 0; x < diff.cols(); x++) {
matchValue += diffIndexer.get(y, x);
}
}
matchResults[i] = matchValue;
}
// 组合车牌号码
StringBuilder plateNumberBuilder = new StringBuilder();
for (int i = 0; i < 10; i++) {
int minMatchValue = Integer.MAX_VALUE;
int minMatchIndex = -1;
for (int j = 0; j < 10; j++) {
if (matchResults[j] < minMatchValue) {
minMatchValue = matchResults[j];
minMatchIndex = j;
}
}
if (minMatchValue < 5000) {
plateNumberBuilder.append(minMatchIndex);
} else {
plateNumberBuilder.append("*");
}
matchResults[minMatchIndex] = Integer.MAX_VALUE;
}
String plateNumber = plateNumberBuilder.toString();
// 在图像上显示车牌号码
opencv_core.Point textPosition = new opencv_core.Point(plateRect.x(), plateRect.y() - 10);
opencv_imgproc.putText(contoursImg, plateNumber, textPosition, opencv_imgproc.FONT_HERSHEY_SIMPLEX, 1.0, new opencv_core.Scalar(0, 0, 255), 2);
}
// 显示图像
opencv_imgcodecs.imshow("Camera", contoursImg);
opencv_imgcodecs.waitKey(1);
}
}
}
```
代码中使用了一个名为template.jpg的模板图像,其中包含了所有数字字符的样本图像。程序从摄像头获取图像帧,并对图像进行车牌检测和识别的预处理,然后进行形态学运算处理车牌区域,最后提取车牌字符并进行识别,将识别出的车牌字符组合成完整的车牌号码,并在图像上显示车牌号码。
阅读全文