python实现将核方法运用到感知器算法中
时间: 2024-03-26 20:39:23 浏览: 64
Python实现感知器算法
4星 · 用户满意度95%
感知器算法是一种基于线性分类器的简单机器学习算法,它可以用来解决二元分类问题。核方法是一种将低维空间中的数据映射到高维空间中进行分类的方法。将核方法运用到感知器算法中,可以使得感知器算法可以处理非线性可分的数据。
具体实现可以参考以下步骤:
1.引入必要的库和模块
```python
import numpy as np
from sklearn.datasets import make_circles
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
```
2.生成数据集
```python
X, y = make_circles(n_samples=1000, factor=.1, noise=.1, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
```
3.数据预处理
```python
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```
4.定义感知器算法
```python
class Perceptron:
def __init__(self, lr=0.01, n_iters=1000):
self.lr = lr
self.n_iters = n_iters
self.activation_func = self._unit_step_func
self.weights = None
self.bias = None
def fit(self, X, y):
n_samples, n_features = X.shape
# init parameters
self.weights = np.zeros(n_features)
self.bias = 0
y_ = np.array([1 if i > 0 else 0 for i in y])
# gradient descent
for _ in range(self.n_iters):
for idx, x_i in enumerate(X):
linear_output = np.dot(x_i, self.weights) + self.bias
y_predicted = self.activation_func(linear_output)
update = self.lr * (y_[idx] - y_predicted)
self.weights += update * x_i
self.bias += update
def predict(self, X):
linear_output = np.dot(X, self.weights) + self.bias
y_predicted = self.activation_func(linear_output)
return y_predicted
def _unit_step_func(self, x):
return np.where(x >= 0, 1, 0)
```
5.定义核函数
```python
def rbf_kernel(X1, X2, gamma):
"""
RBF kernel
Parameters
----------
X1 : numpy.ndarray
Input data
X2 : numpy.ndarray
Input data
gamma : float
Kernel parameter
Returns
-------
numpy.ndarray
Kernel matrix
"""
n_samples_1, n_features_1 = X1.shape
n_samples_2, n_features_2 = X2.shape
K = np.zeros((n_samples_1, n_samples_2))
for i, x_i in enumerate(X1):
for j, x_j in enumerate(X2):
diff = x_i - x_j
K[i, j] = np.exp(-gamma * np.dot(diff, diff))
return K
```
6.将核函数应用于感知器算法
```python
class KernelPerceptron:
def __init__(self, lr=0.01, n_iters=1000, kernel_func=rbf_kernel, gamma=1):
self.lr = lr
self.n_iters = n_iters
self.kernel_func = kernel_func
self.gamma = gamma
self.activation_func = self._unit_step_func
self.alpha = None
self.bias = None
self.X = None
self.y = None
def fit(self, X, y):
n_samples, _ = X.shape
self.alpha = np.zeros(n_samples)
self.bias = 0
self.X = X
self.y = y
kernel_matrix = self.kernel_func(X, X, self.gamma)
for _ in range(self.n_iters):
for i in range(n_samples):
linear_output = kernel_matrix[i] @ (self.alpha * self.y) + self.bias
y_predicted = self.activation_func(linear_output)
update = self.lr * (self.y[i] - y_predicted)
self.alpha[i] += update
support_vectors = self.alpha > 1e-5
self.alpha = self.alpha[support_vectors]
self.support_vectors = X[support_vectors]
self.support_vectors_y = y[support_vectors]
self.bias = np.mean(
[y_k - self.predict(x_k, get_raw_result=True) for (y_k, x_k) in zip(self.support_vectors_y, self.support_vectors)])
def predict(self, X, get_raw_result=False):
kernel_output = self.kernel_func(self.support_vectors, X, self.gamma)
prediction = np.sign((self.alpha * self.support_vectors_y) @ kernel_output + self.bias)
if get_raw_result:
return (self.alpha * self.support_vectors_y) @ kernel_output + self.bias
return prediction
def _unit_step_func(self, x):
return np.where(x >= 0, 1, 0)
```
7.训练和测试模型
```python
kernel_perceptron = KernelPerceptron(lr=0.01, n_iters=500, kernel_func=rbf_kernel, gamma=1)
kernel_perceptron.fit(X_train, y_train)
y_pred = kernel_perceptron.predict(X_test)
accuracy = np.mean(y_pred == y_test)
print(f"Accuracy: {accuracy}")
```
这样,就可以将核方法应用到感知器算法中,处理非线性可分的数据。
阅读全文