train_data = torch.FloatTensor(train_data).view(-1) test_data = torch.FloatTensor(test_data).view(-1)
时间: 2024-04-26 08:27:06 浏览: 155
Mnist-Torch_torch_Mnist-Torch_
这段代码的作用是什么?
这段代码的作用是将训练数据和测试数据转换为 PyTorch 的张量,并且将它们的形状(view)调整为一维向量。具体来说,`train_data = torch.FloatTensor(train_data)` 将 `train_data` 转换为 PyTorch 中的 `FloatTensor` 类型的张量。同样,`test_data = torch.FloatTensor(test_data)` 将 `test_data` 转换为 PyTorch 中的 `FloatTensor` 类型的张量。这样做的目的是为了方便在 PyTorch 中对数据进行处理和计算。`view(-1)` 的作用是将张量的形状调整为一维向量,其中 `-1` 表示自动推断该维度的大小。这样做的目的是为了将二维的数据矩阵转换为一维的数据向量,从而方便后续的模型训练和预测。需要注意的是,在 PyTorch 中,张量的形状是非常重要的,它可能会影响模型的输入和输出。因此,在处理数据时需要仔细检查张量的形状是否正确。
阅读全文