ECA_Resnet50用于图像去噪中可以改变Adam优化器吗
时间: 2024-06-07 18:07:51 浏览: 143
可以改变Adam优化器,Adam优化器是一种基于梯度的自适应优化算法,它可以根据梯度的大小和方向自适应地调整每个参数的学习率,以便更好地优化模型。但是,对于图像去噪任务,使用哪种优化器并没有一个固定的答案,因为不同的优化器可以对模型的训练产生不同的影响。你可以尝试使用其他常见的优化器,如SGD、Adagrad、RMSprop等,来进行比较实验,看看哪种优化器可以在你的任务中获得更好的效果。
相关问题
用eca_resnet50进行图像去噪,包含train.py、val,py、test.py,并在test.py中导出去噪后的图片
好的,首先需要安装相关的库,包括PyTorch、torchvision、Pillow、numpy等。
接着,我们可以定义一个 `ECA_ResNet50` 类,实现图像去噪的功能。具体实现代码如下:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ECABlock(nn.Module):
def __init__(self, channels, kernel_size, gamma=2, b=1):
super(ECABlock, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv = nn.Conv1d(1, 1, kernel_size, padding=(kernel_size - 1) // 2, bias=False)
self.sigmoid = nn.Sigmoid()
self.fc = nn.Sequential(
nn.Linear(channels, channels // gamma),
nn.ReLU(inplace=True),
nn.Linear(channels // gamma, channels)
)
self.bn = nn.BatchNorm2d(channels, affine=False)
self.b = b
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x)
y = self.conv(y.squeeze(-1).transpose(-1, -2))
y = y.transpose(-1, -2).unsqueeze(-1)
y = self.sigmoid(y)
y = x * y.expand_as(x)
z = self.fc(y.view(b, c)).view(b, c, 1, 1)
out = self.bn(z) * self.b + x
return out
class ECA_ResNet50(nn.Module):
def __init__(self, num_classes=10):
super(ECA_ResNet50, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = nn.Sequential(
nn.Conv2d(64, 256, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
ECABlock(256, 3),
ECABlock(256, 3),
ECABlock(256, 3)
)
self.layer2 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=1, stride=2, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
ECABlock(512, 3),
ECABlock(512, 3),
ECABlock(512, 3),
ECABlock(512, 3)
)
self.layer3 = nn.Sequential(
nn.Conv2d(512, 1024, kernel_size=1, stride=2, bias=False),
nn.BatchNorm2d(1024),
nn.ReLU(inplace=True),
ECABlock(1024, 3),
ECABlock(1024, 3),
ECABlock(1024, 3),
ECABlock(1024, 3),
ECABlock(1024, 3),
ECABlock(1024, 3)
)
self.layer4 = nn.Sequential(
nn.Conv2d(1024, 2048, kernel_size=1, stride=2, bias=False),
nn.BatchNorm2d(2048),
nn.ReLU(inplace=True),
ECABlock(2048, 3),
ECABlock(2048, 3),
ECABlock(2048, 3)
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(2048, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
接下来,我们需要定义训练、验证和测试函数。训练函数中,我们使用 `nn.MSELoss()` 作为损失函数,使用 `torch.optim.Adam()` 作为优化器,设置学习率为 0.001,训练 50 个 epoch,每个 epoch 中,我们先将模型设置为训练模式,然后遍历训练集中的每一个 batch,将输入的图像加上噪声,将加噪后的图像送入网络中,计算输出和目标图像的均方误差,并更新网络参数。每个 epoch 完成后,我们调用验证函数,计算模型在验证集上的准确率。测试函数中,我们遍历测试集中的每一个样本,将其送入网络中,得到去噪后的图像,并保存到指定的文件夹中。
具体实现代码如下:
```python
import os
import numpy as np
import argparse
from PIL import Image
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.utils import save_image
import torchvision.transforms as transforms
def train(net, trainloader, criterion, optimizer, device):
net.train()
train_loss = 0
for i, (inputs, targets) in enumerate(trainloader):
inputs = inputs.to(device)
targets = targets.to(device)
inputs_noisy = inputs + 0.1 * torch.randn(inputs.size()).to(device)
optimizer.zero_grad()
outputs = net(inputs_noisy)
loss = criterion(outputs, inputs)
loss.backward()
optimizer.step()
train_loss += loss.item()
return train_loss / len(trainloader)
def val(net, valloader, criterion, device):
net.eval()
total = 0
correct = 0
val_loss = 0
with torch.no_grad():
for i, (inputs, targets) in enumerate(valloader):
inputs = inputs.to(device)
targets = targets.to(device)
inputs_noisy = inputs + 0.1 * torch.randn(inputs.size()).to(device)
outputs = net(inputs_noisy)
loss = criterion(outputs, inputs)
val_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
return val_loss / len(valloader), correct / total
def test(net, testloader, device, output_dir):
net.eval()
if not os.path.exists(output_dir):
os.makedirs(output_dir)
for i, (inputs, filename) in enumerate(testloader):
inputs = inputs.to(device)
inputs_noisy = inputs + 0.1 * torch.randn(inputs.size()).to(device)
outputs = net(inputs_noisy)
denoised_img = outputs.detach().cpu()
save_image(denoised_img, os.path.join(output_dir, filename[0]))
def main():
parser = argparse.ArgumentParser(description="Image Denoising with ECA-ResNet50")
parser.add_argument('--train-data', type=str, default='./train', help='path to the train data')
parser.add_argument('--val-data', type=str, default='./val', help='path to the validation data')
parser.add_argument('--test-data', type=str, default='./test', help='path to the test data')
parser.add_argument('--output-dir', type=str, default='./output/', help='output directory')
parser.add_argument('--num-epochs', type=int, default=50, help='number of epochs to train')
parser.add_argument('--batch-size', type=int, default=32, help='batch size')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
parser.add_argument('--num-workers', type=int, default=4, help='number of workers for data loading')
parser.add_argument('--cuda', action='store_true', help='use cuda')
args = parser.parse_args()
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()
])
val_transform = transforms.Compose([
transforms.ToTensor()
])
test_transform = transforms.Compose([
transforms.ToTensor()
])
trainset = ImageFolderWithFilename(args.train_data, transform=train_transform)
trainloader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
valset = ImageFolderWithFilename(args.val_data, transform=val_transform)
valloader = DataLoader(valset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
testset = ImageFolderWithFilename(args.test_data, transform=test_transform)
testloader = DataLoader(testset, batch_size=1, shuffle=False, num_workers=args.num_workers)
device = torch.device('cuda' if args.cuda and torch.cuda.is_available() else 'cpu')
net = ECA_ResNet50().to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(net.parameters(), lr=args.lr)
for epoch in range(args.num_epochs):
train_loss = train(net, trainloader, criterion, optimizer, device)
val_loss, val_acc = val(net, valloader, criterion, device)
print('Epoch [{}/{}], Train Loss: {:.4f}, Val Loss: {:.4f}, Val Acc: {:.4f}'.format(
epoch+1, args.num_epochs, train_loss, val_loss, val_acc))
test(net, testloader, device, args.output_dir)
class ImageFolderWithFilename(torchvision.datasets.ImageFolder):
def __getitem__(self, index):
original_tuple = super().__getitem__(index)
path = self.imgs[index][0]
tuple_with_path = (original_tuple + (path,))
return tuple_with_path
if __name__ == '__main__':
main()
```
最后,我们可以通过以下命令运行代码:
```
python train.py --train-data <path_to_train_data> --val-data <path_to_validation_data> --test-data <path_to_test_data> --output-dir <path_to_output_directory> --num-epochs 50 --batch-size 32 --lr 0.001 --num-workers 4 --cuda
```
其中,`<path_to_train_data>`、`<path_to_validation_data>` 和 `<path_to_test_data>` 分别为训练集、验证集和测试集的路径,`<path_to_output_directory>` 为输出文件夹的路径。`--num-epochs`、`--batch-size`、`--lr` 和 `--num-workers` 分别表示训练的 epoch 数、batch size、学习率和数据加载的线程数。`--cuda` 表示使用 CUDA 进行训练(如果可用)。
更改eca_Resnet50来进行图像去噪的pytorch代码
好的,我可以帮你更改eca_Resnet50来进行图像去噪的PyTorch代码。首先,我们需要将eca_Resnet50模型加载到PyTorch中。你可以使用以下代码加载eca_Resnet50模型:
```python
import torch
import torch.nn as nn
from eca_module import eca_layer
from torchvision.models.resnet import ResNet, Bottleneck
class ECA_ResNet(ResNet):
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None, use_ecalayer=True):
super(ECA_ResNet, self).__init__(block, layers, num_classes=num_classes, zero_init_residual=zero_init_residual,
groups=groups, width_per_group=width_per_group,
replace_stride_with_dilation=replace_stride_with_dilation,
norm_layer=norm_layer)
if use_ecalayer:
self.ecalayer = eca_layer(channel=512)
else:
self.ecalayer = None
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
if self.ecalayer:
x = self.ecalayer(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
def eca_resnet50(pretrained=False, progress=True, use_ecalayer=True, **kwargs):
model = ECA_ResNet(Bottleneck, [3, 4, 6, 3], use_ecalayer=use_ecalayer, **kwargs)
if pretrained:
state_dict = torch.load('path/to/pretrained/eca_resnet50.pth')
model.load_state_dict(state_dict)
return model
```
这里我们使用了`ECA_ResNet`类来定义`eca_resnet50`模型,该类继承了`ResNet`类,并在其基础上添加了`eca_layer`。使用`use_ecalayer`参数可以控制是否使用`eca_layer`。如果`use_ecalayer`为True,则在最后一个卷积层后添加`eca_layer`层,否则不添加。
接下来,我们需要定义图像去噪的损失函数。在这里,我们可以使用均方误差(MSE)损失函数,即将输入图像与目标图像之间的像素值之差的平方和作为损失函数:
```python
import torch.nn.functional as F
def denoise_loss(input_image, target_image):
mse_loss = F.mse_loss(input_image, target_image)
return mse_loss
```
最后,我们可以使用以下代码来定义训练循环:
```python
import torch.optim as optim
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 加载模型
model = eca_resnet50(pretrained=True, use_ecalayer=True).to(device)
# 定义优化器和学习率
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练循环
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
# 获取训练数据
inputs, targets = data[0].to(device), data[1].to(device)
# 清空梯度
optimizer.zero_grad()
# 前向传播
outputs = model(inputs)
# 计算损失
loss = denoise_loss(outputs, targets)
# 反向传播和优化
loss.backward()
optimizer.step()
# 打印统计信息
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
```
在这里,我们使用Adam优化器进行模型优化,并将模型移动到GPU设备(如果可用)。在训练循环中,我们首先获取训练数据,然后清空梯度,进行前向传播,并计算损失。接下来,我们进行反向传播并优化模型。最后,我们打印统计信息,以便跟踪模型的训练进展。
阅读全文