用tensorflow写将ECA加入到Resnet50中
时间: 2024-05-03 13:21:00 浏览: 165
可以参考以下步骤:
1. 在TensorFlow中加载ResNet50模型。
2. 创建一个自定义层,实现ECA(Efficient Channel Attention)操作。可以参考以下代码:
```
import tensorflow as tf
class EcaLayer(tf.keras.layers.Layer):
def __init__(self, gamma=2, b=1, **kwargs):
super(EcaLayer, self).__init__(**kwargs)
self.gamma = gamma
self.b = b
def call(self, inputs):
shape = tf.shape(inputs)
batch_size, h, w, c = shape[0], shape[1], shape[2], shape[3]
t = int(abs((math.log(c, 2) + self.b) / self.gamma))
k_size = max(3, t if t % 2 else t + 1)
padding = (k_size - 1) // 2
avg_pool = tf.keras.layers.AveragePooling2D(
pool_size=(k_size, k_size),
strides=1,
padding='same'
)(inputs)
conv = tf.keras.layers.Conv2D(
filters=1,
kernel_size=(1, 1),
strides=1,
padding='same'
)(avg_pool)
sigmoid = tf.keras.activations.sigmoid(conv)
outputs = inputs * sigmoid
return outputs
def get_config(self):
config = super(EcaLayer, self).get_config()
config.update({'gamma': self.gamma, 'b': self.b})
return config
```
3. 修改ResNet50模型,将ECA层插入到Conv2D层之后。可以参考以下代码:
```
def resnet50(include_top=True,
weights=None,
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000):
inputs = keras_utils.get_input(
input_tensor, shape=input_shape, name='input'
)
# Stem convolutional layers
x = layers.Conv2D(
filters=64,
kernel_size=(7, 7),
strides=2,
padding='same',
name='conv1_conv',
)(inputs)
x = layers.BatchNormalization(name='conv1_bn')(x)
x = layers.Activation('relu', name='conv1_relu')(x)
x = layers.MaxPooling2D(
pool_size=(3, 3), strides=2, padding='same', name='pool1'
)(x)
# Stage 2
x = conv_block(x, 3, filters=[64, 64, 256], stage=2, block='a', eca=True)
x = identity_block(x, 3, filters=[64, 64, 256], stage=2, block='b', eca=True)
x = identity_block(x, 3, filters=[64, 64, 256], stage=2, block='c', eca=True)
# Stage 3
x = conv_block(x, 3, filters=[128, 128, 512], stage=3, block='a', eca=True)
x = identity_block(x, 3, filters=[128, 128, 512], stage=3, block='b', eca=True)
x = identity_block(x, 3, filters=[128, 128, 512], stage=3, block='c', eca=True)
x = identity_block(x, 3, filters=[128, 128, 512], stage=3, block='d', eca=True)
# Stage 4
x = conv_block(x, 3, filters=[256, 256, 1024], stage=4, block='a', eca=True)
x = identity_block(x, 3, filters=[256, 256, 1024], stage=4, block='b', eca=True)
x = identity_block(x, 3, filters=[256, 256, 1024], stage=4, block='c', eca=True)
x = identity_block(x, 3, filters=[256, 256, 1024], stage=4, block='d', eca=True)
x = identity_block(x, 3, filters=[256, 256, 1024], stage=4, block='e', eca=True)
x = identity_block(x, 3, filters=[256, 256, 1024], stage=4, block='f', eca=True)
# Stage 5
x = conv_block(x, 3, filters=[512, 512, 2048], stage=5, block='a', eca=True)
x = identity_block(x, 3, filters=[512, 512, 2048], stage=5, block='b', eca=True)
x = identity_block(x, 3, filters=[512, 512, 2048], stage=5, block='c', eca=True)
if include_top:
# Classification block
x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
x = layers.Dense(classes, activation='softmax', name='output')(x)
else:
if pooling == 'avg':
x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
elif pooling == 'max':
x = layers.GlobalMaxPooling2D(name='max_pool')(x)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = keras_utils.get_source_inputs(input_tensor)
else:
inputs = inputs
# Create model.
model = training.Model(inputs, x, name='resnet50')
return model
```
其中,eca=True表示这个块会使用ECA层。
4. 将模型编译并训练。可以参考以下代码:
```
model = resnet50()
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=20, batch_size=32)
```
以上就是用TensorFlow将ECA加入到ResNet50中的方法。
阅读全文