翻译:In this work, we train a single-frame based denoising network, i.e. the U-Net , with synthesized raw noisy- clean image pairs to serve as the pre-denoising module. We use 230 clean raw images from SID dataset, and synthe- size noise using the method described in Sec. 3.2 to create noisy-clean pairs. Note that, pixels of different color channels in an raw image are mosaiced according to the Bayer pattern, i.e. the most similar pixels for each pixel are not its nearest neighbors, but are its secondary nearest neighbor
时间: 2024-04-26 16:22:39 浏览: 93
U-net去伪影深度学习算法(可运行自己的数据集)
在这项工作中,我们使用合成的原始噪声 - 干净图像对训练单帧基础去噪网络,即U-Net,作为预去噪模块。我们使用SID数据集中的230个干净原始图像,并使用第3.2节中描述的方法合成噪声来创建噪声 - 干净对。请注意,原始图像中不同颜色通道的像素按照Bayer模式进行马赛克处理,即每个像素的最相似像素不是其最近邻,而是其次近邻。
阅读全文