class neuron: def __init__(self): self.t_rest = 0 self.Pn = np.zeros(len(time)) self.spike = np.zeros(len(time)) def out(self,S, w): for i, t in enumerate(time): if i==0: a1 = S[:,i] self.Pn[i] = np.dot(w,a1) - D self.spike[i] = 0 else: if t<=self.t_rest: self.Pn[i] = Pref self.spike[i] = 0 elif t>self.t_rest: if self.Pn[i-1]>Pmin: a1 = S[:,i] self.Pn[i] = self.Pn[i-1] + np.dot(w,a1) - 0.25 self.spike[i] = 0 else: self.Pn[i] = 0 self.spike[i] = 0 if self.Pn[i]>=Pth: self.Pn[i] += Pspike self.t_rest = t + t_ref self.spike[i] = 1 return self.spike

时间: 2024-02-10 14:19:52 浏览: 26
这是一个神经元类的代码,其中包含了初始化函数和输出函数。在初始化函数中,神经元的初始状态为静息状态,没有任何兴奋。在输出函数中,输入了神经元的输入信号S和权重w,通过计算输出神经元的脉冲。如果神经元的膜电位超过了阈值Pth,则会发放脉冲,并且在发放脉冲之后,会有一个绝对不应期t_ref,在这个时间段内,神经元不能再被激活。如果膜电位没有超过阈值,则不会发放脉冲。其中包含了一些参数:D是偏置电流,Pmin是神经元的最小膜电位,Pref是神经元的静息膜电位,Pspike是神经元在发放脉冲后的膜电位增加量。
相关问题

def sigmoid(z): return 1.0/(1.0+math.exp(-z)) # random number def random_clamped(): return random.random()*2-1 # "神经元" class Neuron(): def __init__(self): self.biase = 0 self.weights = [] def init_weights(self, n): self.weights = [] for i in range(n): self.weights.append(random_clamped()) def __repr__(self): return 'Neuron weight size:{} biase value:{}'.format(len(self.weights), self.biase) # 层 class Layer(): def __init__(self, index): self.index = index self.neurons = [] def init_neurons(self, n_neuron, n_input): self.neurons = [] for i in range(n_neuron): neuron = Neuron() neuron.init_weights(n_input) self.neurons.append(neuron) def __repr__(self): return 'Layer ID:{} Layer neuron size:{}'.format(self.index, len(self.neurons)) 翻译

这是一个神经网络的 Python 代码。该代码定义了 sigmoid 函数、神经元类(Neuron)、神经元层类(Layer)等。 sigmoid(z) 函数用于计算 sigmoid 函数的值,sigmoid 函数常用于神经网络中,用于将输入数据转换为 0 到 1 之间的输出值。 random_clamped() 函数用于生成一个随机的浮点数,其取值范围在 -1 到 1 之间。 Neuron 类代表神经网络中的一个神经元,其包含一个偏置值(biase)和多个权重值(weights)。该类的 init_weights() 方法用于初始化权重值,其中 n 参数表示权重值的数量。 Layer 类代表神经网络中的一层神经元,其包含多个神经元(neurons)。该类的 init_neurons() 方法用于初始化神经元,其中 n_neuron 和 n_input 分别表示该层神经元的数量和每个神经元的输入数量。 最后,__repr__() 方法用于打印神经元和神经元层的信息。

import numpy as np def sigmond(x): return 1/(1+np.exp(-x)) class Neuron: def _int_(self,weights,bias): self.weights=weights self.bias=bias def feedforward(self,inputs): total=np.dot(self.weights,inputs)+self.bias return sigmond(total) weights=np.array([0,1]) bias=4 n=Neuron(weights,bias) x=np.array([2,3]) print(n.feedforward(x))

这段代码实现了一个神经元模型,其中包括了一个 sigmoid 函数,一个 Neuron 类和一个 feedforward 方法。在构造 Neuron 类的对象时,需要传入神经元的权重和偏置,feedforward 方法接收一个输入,使用权重和偏置计算输出并通过 sigmoid 函数进行激活,最后返回激活后的输出。在这段代码中,使用了给定的权重和偏置构造了一个神经元对象,并将一个长度为 2 的输入向量传递给 feedforward 方法,输出了激活后的结果。

相关推荐

请将如下的matlab代码转为python代码,注意使用pytorch框架实现,并对代码做出相应的解释:function [nets,errors]=BPMLL_train(train_data,train_target,hidden_neuron,alpha,epochs,intype,outtype,Cost,min_max) rand('state',sum(100clock)); if(nargin<9) min_max=minmax(train_data'); end if(nargin<8) Cost=0.1; end if(nargin<7) outtype=2; end if(nargin<6) intype=2; end if(nargin<5) epochs=100; end if(nargin<4) alpha=0.05; end if(intype==1) in='logsig'; else in='tansig'; end if(outtype==1) out='logsig'; else out='tansig'; end [num_class,num_training]=size(train_target); [num_training,Dim]=size(train_data); Label=cell(num_training,1); not_Label=cell(num_training,1); Label_size=zeros(1,num_training); for i=1:num_training temp=train_target(:,i); Label_size(1,i)=sum(temp==ones(num_class,1)); for j=1:num_class if(temp(j)==1) Label{i,1}=[Label{i,1},j]; else not_Label{i,1}=[not_Label{i,1},j]; end end end Cost=Cost2; %Initialize multi-label neural network incremental=ceil(rand100); for randpos=1:incremental net=newff(min_max,[hidden_neuron,num_class],{in,out}); end old_goal=realmax; %Training phase for iter=1:epochs disp(strcat('training epochs: ',num2str(iter))); tic; for i=1:num_training net=update_net_ml(net,train_data(i,:)',train_target(:,i),alpha,Cost/num_training,in,out); end cur_goal=0; for i=1:num_training if((Label_size(i)~=0)&(Label_size(i)~=num_class)) output=sim(net,train_data(i,:)'); temp_goal=0; for m=1:Label_size(i) for n=1:(num_class-Label_size(i)) temp_goal=temp_goal+exp(-(output(Label{i,1}(m))-output(not_Label{i,1}(n)))); end end temp_goal=temp_goal/(mn); cur_goal=cur_goal+temp_goal; end end cur_goal=cur_goal+Cost0.5(sum(sum(net.IW{1}.*net.IW{1}))+sum(sum(net.LW{2,1}.*net.LW{2,1}))+sum(net.b{1}.*net.b{1})+sum(net.b{2}.*net.b{2})); disp(strcat('Global error after ',num2str(iter),' epochs is: ',num2str(cur_goal))); old_goal=cur_goal; nets{iter,1}=net; errors{iter,1}=old_goal; toc; end disp('Maximum number of epochs reached, training process completed');

class srmNeuronFunc(object): funclists = ['srm_forward<float>', 'srm_backward<float>'] cu_module = cp.RawModule(code=CU_SOURCE_CODE_RAW_STRING, options=('-std=c++11', '-I ' + _CURPATH), name_expressions=funclists) neuron_FP = cu_module.get_function(funclists[0]) neuron_BP = cu_module.get_function(funclists[1]) @staticmethod def forward(inputs: Tensor, taum: float, taus: float, e_taug: float, v_th: float) -> List[Tensor]: spikes = torch.zeros_like(inputs) delta_ut = torch.zeros_like(inputs) delta_u = torch.zeros_like(inputs) B, T, dim = *inputs.shape[:2], inputs[0][0].numel() with cp.cuda.Device(inputs.get_device()): srmNeuronFunc.neuron_FP(((B * dim + 1023) // 1024,), (1024,), ( tensor_to_cparray(inputs.contiguous()), tensor_to_cparray(spikes.contiguous()), tensor_to_cparray(delta_ut.contiguous()), tensor_to_cparray(delta_u.contiguous()), cp.float32(taum), cp.float32(taus), cp.float32(e_taug), cp.float32(v_th), cp.int32(B), cp.int32(T), cp.int32(dim) )) return spikes, delta_ut, delta_u @staticmethod def backward(grad_out: Tensor, delta_ut: Tensor, delta_u: Tensor, spikes: Tensor, epsw: Tensor, epst: Tensor) -> List[Tensor]: grad_w = torch.zeros_like(grad_out) grad_t = torch.zeros_like(grad_out) B, T, dim = *grad_out.shape[:2], grad_out[0][0].numel() with cp.cuda.Device(grad_out.get_device()): srmNeuronFunc.neuron_BP(((B * dim + 1023) // 1024,), (1024,), ( tensor_to_cparray(grad_out.contiguous()), tensor_to_cparray(delta_ut.contiguous()), tensor_to_cparray(delta_u.contiguous()), tensor_to_cparray(spikes.contiguous()), tensor_to_cparray(epsw), tensor_to_cparray(epst), tensor_to_cparray(grad_w.contiguous()), tensor_to_cparray(grad_t.contiguous()), cp.int32(B), cp.int32(T), cp.int32(dim) )) return grad_w, grad_t

最新推荐

recommend-type

Lan仿朋友圈系统开源,可用于表白墙等微商相册,商品图册等.rar

Lan仿朋友圈系统开源,可用于表白墙等微商相册,商品图册等.rarLan仿朋友圈系统开源,可用于表白墙等微商相册,商品图册等.rar
recommend-type

C++基础辅助类库.zip

比如异步进行-Thread,安全句柄-CHandle,资源守卫-Guard,XML解析-rapidxml,以及其他注册表、文件基础操作。用于更加高效、安全的进行C++开发。温馨提示:至少需要支持C++0x标准的编译器。
recommend-type

集团企业IT技术架构规划方案qy.pptx

集团企业IT技术架构规划方案qy.pptx
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Redis验证与连接:快速连接Redis服务器指南

![Redis验证与连接:快速连接Redis服务器指南](https://img-blog.csdnimg.cn/20200905155530592.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzMzNTg5NTEw,size_16,color_FFFFFF,t_70) # 1. Redis验证与连接概述 Redis是一个开源的、内存中的数据结构存储系统,它使用键值对来存储数据。为了确保数据的安全和完整性,Redis提供了多
recommend-type

gunicorn -k geventwebsocket.gunicorn.workers.GeventWebSocketWorker app:app 报错 ModuleNotFoundError: No module named 'geventwebsocket' ]

这个报错是因为在你的环境中没有安装 `geventwebsocket` 模块,可以使用下面的命令来安装: ``` pip install gevent-websocket ``` 安装完成后再次运行 `gunicorn -k geventwebsocket.gunicorn.workers.GeventWebSocketWorker app:app` 就不会出现这个报错了。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

Redis配置文件解读:实例解析redis.windows.conf

![Redis配置文件解读:实例解析redis.windows.conf](https://img-blog.csdn.net/20180726010513323?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3lhbmc1NzI2Njg1/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70) # 1. Redis配置文件概述 Redis配置文件是Redis服务器运行的配置文件,它包含了Redis服务器的各种配置参数。通过修改Redis配置文件,我们可以对Redis服务器的运行行为进行