In this section, we use simulations to evaluate the performance of the proposed LyDROO algorithm. All the computations are evaluated on a TensorFlow 2.0 platform with an Intel Core i5-4570 3.2GHz CPU and 12 GB of memory. We assume that the average channel gain h ̄i ̄ 3×108 de follows a path-loss model hi = Ad 4πfcdi , i = 1,··· ,N, where Ad = 3 denotes the antenna gain, fc = 915 MHz denotes the carrier frequency, de = 3 denotes the path loss exponent, and di in meters denotes the distance between the ith WD and the ES. hi follows an i.i.d. Rician distribution with line-of-sight link gain equal to 0.3h ̄ i . The noise power N0 = W υ0 with noise power spectral density υ0 = −174 dBm/Hz. Unless otherwise stated, we consider N = 10 WDs equally spaced with di = 120+15(i−1), for i = 1,··· ,N. The weight ci = 1.5 if i is an odd number and ci = 1 otherwise. The task data arrivals of all the WDs follow exponential distribution with equal average rate E [Ati ] = λi , i = 1, · · · , N . The values of the other parameters are listed in Table I, which are equal for all the WDs.,列出变量和他们怎么获得的
时间: 2024-02-15 14:27:27 浏览: 144
基于Tensorflow:CPU性能分析
变量及其获取方式如下:
- h ̄i:平均信道增益。根据论文中所述的路径损耗模型,通过距离di计算得到。
- hi:第i个无线设备(WD)与边缘服务器(ES)之间的信道增益。根据论文中所述的路径损耗模型,通过距离di计算得到。
- N0:噪声功率。根据噪声功率谱密度和带宽W计算得到。
- υ0:噪声功率谱密度。根据论文中所述的参数值得到。
- ci:第i个无线设备(WD)的权重。根据论文中所述的规则计算得到。
- Ati:第i个无线设备(WD)到达的任务数据数量。根据论文中所述的规则,所有无线设备的任务数据到达率均相等。
- λi:第i个无线设备(WD)的任务数据到达率。根据论文中所述的规则,所有无线设备的任务数据到达率均相等。
- Ad:天线增益。根据论文中所述的参数值得到。
- fc:载波频率。根据论文中所述的参数值得到。
- de:路径损耗指数。根据论文中所述的参数值得到。
- di:第i个无线设备(WD)与边缘服务器(ES)之间的距离。根据论文中所述的规则计算得到。
- W:带宽。根据论文中所述的参数值得到。
- vu:信道噪声的方差。根据论文中所述的参数值得到。
这些参数的具体值和计算方式均在论文中给出。
阅读全文