在初次学习需要计算全部层的梯度,但是增量学习需要冻结部分层时,如何避免RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn的问题
时间: 2023-10-22 14:15:28 浏览: 227
在增量学习时,可以使用torch.no_grad()上下文管理器临时关闭梯度计算,以避免出现“element 0 of tensors does not require grad and does not have a grad_fn”的错误。具体实现方法如下:
1. 在定义模型时,将需要冻结的层的requires_grad设置为False,例如:
```
model = nn.Sequential(
nn.Linear(10, 5),
nn.ReLU(),
nn.Linear(5, 2),
nn.ReLU(),
nn.Linear(2, 1)
)
for param in model.parameters():
param.requires_grad = False # 冻结全部层
for i in range(4):
model[i].requires_grad = True # 解冻需要更新的层
```
2. 在训练时,使用torch.no_grad()上下文管理器临时关闭梯度计算,例如:
```
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
for epoch in range(num_epochs):
for inputs, labels in dataloader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
with torch.no_grad():
# 冻结的层不需要更新梯度
for name, param in model.named_parameters():
if param.requires_grad is False:
continue
param -= learning_rate * param.grad
optimizer.step()
```
在使用torch.no_grad()上下文管理器时,计算图不会被记录,也就不需要计算冻结的层的梯度,从而避免出现“element 0 of tensors does not require grad and does not have a grad_fn”的错误。
阅读全文