增量学习需要冻结部分层时,如何避免RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn的问题
时间: 2023-10-22 13:12:53 浏览: 205
当冻结部分层后,这些层的参数将不参与梯度计算,因此在反向传播过程中,这些参数的梯度将为None,因此会出现"RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn"的错误。
为了避免这个问题,可以在定义模型时,将所有层的requires_grad属性设置为False,然后再将需要参与梯度计算的层的requires_grad属性设置为True,这样就能够避免上述错误。
例如,对于一个模型,我们希望冻结前两个卷积层,代码如下:
```python
import torch.nn as nn
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
self.fc = nn.Linear(64 * 8 * 8, 10)
# 将所有层的requires_grad属性设置为False
for param in self.parameters():
param.requires_grad = False
# 将需要参与梯度计算的层的requires_grad属性设置为True
self.conv3.requires_grad = True
self.fc.requires_grad = True
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
这样就能够避免出现"RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn"的错误。
阅读全文