增量学习冻结网络部分层时总是出现RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
时间: 2023-10-22 16:22:53 浏览: 114
这个错误通常是因为冻结网络部分层时,该层的权重没有被标记为需要计算梯度。你可以尝试在模型定义中将需要计算梯度的权重标记为`requires_grad=True`,例如:
```python
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.fc = nn.Linear(32 * 32 * 32, 10)
# 将需要计算梯度的权重标记为 True
for param in self.conv1.parameters():
param.requires_grad = True
for param in self.conv2.parameters():
param.requires_grad = True
for param in self.fc.parameters():
param.requires_grad = True
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
如果你只想冻结部分层,可以在训练循环中使用`optimizer`的`param_groups`参数,例如:
```python
model = MyModel()
optimizer = optim.SGD(model.parameters(), lr=0.1)
# 将需要冻结的层的权重从优化器的参数组中移除
optimizer.param_groups[0]['params'] = [param for name, param in model.named_parameters() if 'conv1' not in name]
for epoch in range(10):
for inputs, targets in dataloader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
```
这里将`optimizer.param_groups[0]['params']`设置为除了`conv1`以外的其他层的权重,这样优化器只会更新这些层的权重,而`conv1`的权重将保持不变。
阅读全文