利用MATLAB编写代码实现CMA算法
时间: 2023-09-23 13:11:13 浏览: 137
CMA算法是一种常见的优化算法,用于解决连续优化问题。下面是MATLAB代码实现CMA算法的示例:
```matlab
function [x, fval] = cma(fitnessfcn, x0, sigma0, options)
% fitnessfcn: 目标函数句柄
% x0: 初始值
% sigma0: 初始步长
% options: 选项
% 初始化参数
N = length(x0);
lambda = 4 + floor(3*log(N));
mu = floor(lambda/2);
weights = log(mu+1/2)-log(1:mu)';
weights = weights/sum(weights);
mueff = sum(weights)^2/sum(weights.^2);
cc = (4+mueff/N)/(N+4+2*mueff/N);
cs = (mueff+2)/(N+mueff+5);
c1 = 2/((N+1.3)^2+mueff);
cmu = min(1-c1, 2*(mueff-2+1/mueff)/((N+2)^2+mueff));
damps = 1+2*max(0, sqrt((mueff-1)/(N+1))-1)+cs;
pc = zeros(N,1);
ps = zeros(N,1);
B = eye(N);
D = ones(N,1);
C = B*diag(D.^2)*B';
% 开始迭代
x = x0;
sigma = sigma0;
evals = 0;
[fval, ~] = feval(fitnessfcn, x);
bestfval = fval;
bestx = x;
for iter = 1:options.MaxIter
% 生成子代
pop = repmat(x,1,lambda) + sigma*(B*diag(D)*randn(N,lambda));
% 计算适应度
[fvals, idx] = sort(feval(fitnessfcn, pop));
evals = evals + lambda;
% 更新最优解
if fvals(1) < bestfval
bestfval = fvals(1);
bestx = pop(:,idx(1));
end
% 更新权重
xold = x;
x = pop(:,idx(1:mu))*weights;
% 更新进化路径
ps = (1-cs)*ps + sqrt(cs*(2-cs)*mueff)*(B*x);
hsig = norm(ps)/sqrt(1-(1-cs)^(2*evals/lambda))/chiN(N) < 1.4+2/(N+1);
pc = (1-cc)*pc + hsig*sqrt(cc*(2-cc)*mueff)*(B*x);
% 更新协方差矩阵
artmp = (1/sigma)*(pop(:,idx(1:mu))-repmat(xold,1,mu));
C = (1-c1-cmu)*C + c1*(pc*pc'+(1-hsig)*cc*(2-cc)*C) + cmu*artmp*diag(weights)*artmp';
% 更新步长
sigma = sigma*exp((cs/damps)*(norm(ps)/chiN(N)-1));
% 更新B和D
if evals/N/lambda > 1/10
D = diag(sqrt(diag(C)));
B = orth(C);
end
% 检查终止条件
if sigma*max(D) < options.TolFun && max(abs(x-xold)) < options.TolX
break;
end
end
x = bestx;
fval = bestfval;
end
function y = chiN(N)
y = sqrt(N)*(1-1/(4*N)+1/(21*N^2));
end
```
其中,`fitnessfcn`是自己定义的目标函数句柄,`x0`是初始值,`sigma0`是初始步长,`options`是选项结构体,包含最大迭代次数`MaxIter`、目标函数值和解的精度`TolFun`和`TolX`等。函数返回最优解`x`和最优解对应的目标函数值`fval`。
阅读全文