编写使用余弦退火算法自适应学习率优化CNN模型的pytorch环境下开发的程序
时间: 2023-06-25 13:03:13 浏览: 232
这里提供一个使用余弦退火算法自适应学习率优化CNN模型的PyTorch程序。
首先,导入必要的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
```
然后,定义一个简单的CNN模型:
```python
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2))
x = nn.functional.relu(nn.functional.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return nn.functional.log_softmax(x, dim=1)
```
接下来,定义训练函数:
```python
def train(model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = nn.functional.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
```
然后,定义测试函数:
```python
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += nn.functional.nll_loss(output, target, reduction='sum').item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
```
最后,定义主函数:
```python
def main():
# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 加载数据集
train_dataset = MNIST('./data', train=True, download=True, transform=ToTensor())
test_dataset = MNIST('./data', train=False, download=True, transform=ToTensor())
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=1000, shuffle=True)
# 定义模型
model = CNN().to(device)
# 定义优化器
optimizer = optim.SGD(model.parameters(), lr=0.1)
# 训练模型
for epoch in range(1, 11):
train(model, device, train_loader, optimizer, epoch)
test(model, device, test_loader)
# 更新学习率
optimizer.param_groups[0]['lr'] = 0.1 * (1 + math.cos(math.pi * epoch / 10))
if __name__ == '__main__':
main()
```
在主函数中,我们使用余弦退火算法来自适应地更新学习率。具体来说,我们将学习率初始化为0.1,然后在每个epoch中,根据当前epoch数使用余弦函数计算新的学习率,然后将其更新到优化器中的参数组中。这样,我们可以在训练过程中自适应地调整学习率,从而更好地优化模型。
阅读全文