给出一个基于RBF网络逼近的机械手自适应控制代码,具有三个输入特征和三个输出的
时间: 2023-05-29 08:01:54 浏览: 85
机械手自适应控制代码:
需要导入的库:
```python
import numpy as np
from scipy.spatial.distance import cdist
```
定义RBF网络类:
```python
class RBFNet:
"""
RBF网络类,包含三个函数:初始化、训练、预测
"""
def __init__(self, in_dim, hidden_dim, out_dim):
"""
初始化函数,参数说明:
in_dim: 输入维度
hidden_dim: 隐藏层维度
out_dim: 输出维度
"""
self.in_dim = in_dim
self.hidden_dim = hidden_dim
self.out_dim = out_dim
self.center = None
self.beta = None
self.weight = None
def train(self, X, Y):
"""
训练函数,参数说明:
X: 训练数据特征
Y: 训练数据标签
"""
# 随机选择中心点
centers = X[np.random.choice(X.shape[0], self.hidden_dim, replace=False), :]
# 计算每个样本到中心点的距离
D = cdist(X, centers)
# 设置beta值
self.beta = 1 / np.median(D) ** 2
# 计算RBF函数输出
Phi = np.exp(-self.beta * D ** 2)
# 使用最小二乘法求解权重参数
self.weight = np.linalg.inv(Phi.T @ Phi) @ Phi.T @ Y
self.center = centers
def predict(self, X):
"""
预测函数,参数说明:
X: 待预测数据特征
"""
D = cdist(X, self.center)
Phi = np.exp(-self.beta * D ** 2)
Y_pred = Phi @ self.weight
return Y_pred
```
生成测试数据:
```python
X_train = np.random.rand(100, 3) * 10
Y_train = ((X_train[:, 0] + X_train[:, 1]) * X_train[:, 2] + np.random.randn(100) * 0.1).reshape((-1, 1))
X_test = np.random.rand(10, 3) * 10
```
训练RBF网络并对测试数据进行预测:
```python
# 创建RBF网络实例并进行训练
net = RBFNet(3, 10, 1)
net.train(X_train, Y_train)
# 对测试数据进行预测
Y_pred = net.predict(X_test)
print(Y_pred)
```
阅读全文