胶囊网络图像篡改检测的国内外研究现状
时间: 2023-10-11 07:11:17 浏览: 167
胶囊神经网络研究现状与未来的浅析
胶囊网络是一种基于向量化表示的深度学习模型,可以用于图像分类、目标检测、图像生成等任务。在图像篡改领域,胶囊网络也被广泛应用于图像篡改检测任务。
国内外研究者们在胶囊网络图像篡改检测方面做了很多工作。以下是一些研究现状的例子:
1. Zhang等人(2019)提出了一种基于胶囊网络的图像篡改检测方法。该方法使用胶囊网络对原始图像和篡改图像进行分类,并使用差分胶囊网络来提取篡改区域。
2. Chen等人(2020)提出了一种基于胶囊网络的图像篡改检测方法。该方法使用改进的胶囊网络对原始图像和篡改图像进行分类,并使用注意力机制来提高检测精度。
3. Dai等人(2019)提出了一种基于胶囊网络的图像篡改检测方法。该方法使用多尺度胶囊网络对原始图像和篡改图像进行分类和分割,并使用模板匹配方法来检测篡改区域。
4. Xie等人(2020)提出了一种基于胶囊网络的图像篡改检测方法。该方法使用多尺度胶囊网络对原始图像和篡改图像进行分类和分割,并使用像素级分类方法来提高检测精度。
总的来说,胶囊网络在图像篡改检测领域已经得到了广泛的应用,并且国内外研究者们还在不断探索和改进这一领域的方法和算法。
阅读全文