lines = open(train_orig, 'r').readlines() UnicodeDecodeError: 'gbk' codec can't decode byte 0xae in position 6: illegal multibyte sequence
时间: 2024-01-18 15:18:48 浏览: 112
这个错误是由于文件的编码格式与终端的编码格式不匹配导致的。你可以尝试使用`open`函数的`encoding`参数来指定正确的编码格式。例如,如果文件的编码格式是UTF-8,你可以这样修改代码:
```python
lines = open(train_orig, 'r', encoding='utf-8').readlines()
```
这样就可以正确地读取文件中的内容了。
相关问题
def postprocess_tens(tens_orig_l, out_ab, mode='bilinear'): # tens_orig_l 1 x 1 x H_orig x W_orig # out_ab 1 x 2 x H x W HW_orig = tens_orig_l.shape[2:] HW = out_ab.shape[2:] # call resize function if needed if(HW_orig[0]!=HW[0] or HW_orig[1]!=HW[1]): out_ab_orig = F.interpolate(out_ab, size=HW_orig, mode='bilinear') else: out_ab_orig = out_ab out_lab_orig = torch.cat((tens_orig_l, out_ab_orig), dim=1) return color.lab2rgb(out_lab_orig.data.cpu().numpy()[0,...].transpose((1,2,0)))
这段代码实现了一个将颜色信息从 Lab 颜色空间转换到 RGB 颜色空间的函数。具体来说,输入参数 `tens_orig_l` 表示原始图像的亮度通道,是一个形状为 `(1, 1, H_orig, W_orig)` 的张量,其中 `H_orig` 和 `W_orig` 分别是原始图像的高和宽。输入参数 `out_ab` 表示预测得到的颜色信息,是一个形状为 `(1, 2, H, W)` 的张量,其中第一个维度表示有两个通道,分别是 a 和 b 通道;`HW` 表示 `out_ab` 的高和宽。
函数首先判断 `out_ab` 是否需要进行大小调整,如果需要,则调用 `F.interpolate` 进行双线性插值;否则直接使用 `out_ab`。接着,将 `tens_orig_l` 和 `out_ab_orig` 沿着第二个维度拼接起来,得到一个形状为 `(1, 3, H_orig, W_orig)` 的张量 `out_lab_orig`。最后,调用 `color.lab2rgb` 将 `out_lab_orig` 转换成形状为 `(H_orig, W_orig, 3)` 的 RGB 图像,并返回这个图像。
class CosineScheduler: def __init__(self, max_update, base_lr=0.01, final_lr=0, warmup_steps=0, warmup_begin_lr=0): self.base_lr_orig = base_lr self.max_update = max_update self.final_lr = final_lr self.warmup_steps = warmup_steps self.warmup_begin_lr = warmup_begin_lr self.max_steps = self.max_update - self.warmup_steps def get_warmup_lr(self, epoch): increase = (self.base_lr_orig - self.warmup_begin_lr) \ * float(epoch) / float(self.warmup_steps) return self.warmup_begin_lr + increase def __call__(self, epoch): if epoch < self.warmup_steps: return self.get_warmup_lr(epoch) if epoch <= self.max_update: self.base_lr = self.final_lr + ( self.base_lr_orig - self.final_lr) * (1 + math.cos( math.pi * (epoch - self.warmup_steps) / self.max_steps)) / 2 return self.base_lr scheduler = CosineScheduler(max_update=20, base_lr=0.3, final_lr=0.01) d2l.plot(torch.arange(num_epochs), [scheduler(t) for t in range(num_epochs)])
这段代码实现了一个余弦学习率调度程序,可以在训练神经网络时调整学习率。它包括一个 CosineScheduler 类和一个调用方法。在调用方法中,根据给定的 epoch 值,如果 epoch 值小于预热步数 warmup_steps,则返回预热学习率,否则返回余弦学习率。余弦学习率的计算是通过余弦函数实现的,其中初始学习率 base_lr 逐渐减小到最终学习率 final_lr,然后再逐渐增加回去。该程序还可以设置预热开始学习率 warmup_begin_lr 和预热步数 warmup_steps,并且可以根据最大迭代次数 max_update 计算出最大步数 max_steps。最后,该程序可以通过调用 plot 方法来可视化学习率的变化情况。
阅读全文