采集人员佩戴安全帽和未佩戴安全帽图片作为数据集。对数据集进行分析和预处理,从而得到相关图片特征。选取合适的模型在训练集上进行训练,得到分类模型。最后在测试数据集上进行图片分类识别,获取选择模型相关性能指标。以此编写代码
时间: 2024-11-04 18:11:38 浏览: 47
好的,以下是基于您提供的课程设计内容,编写的用于安全帽佩戴识别的数据采集、预处理、模型训练和测试的Python代码示例。我们将使用常见的深度学习框架TensorFlow和Keras来实现这个项目。
### 1. 数据采集
首先,需要收集人员佩戴安全帽和未佩戴安全帽的图片。这些图片可以来自公开数据集或自行拍摄。
### 2. 数据预处理
```python
import os
import cv2
import numpy as np
from sklearn.model_selection import train_test_split
from tensorflow.keras.utils import to_categorical
# 设置数据路径
data_dir = 'path_to_your_data_directory'
categories = ['with_helmet', 'without_helmet']
# 图片尺寸
img_size = (128, 128)
# 加载和预处理数据
data = []
labels = []
for category in categories:
path = os.path.join(data_dir, category)
label = categories.index(category)
for img_name in os.listdir(path):
img_path = os.path.join(path, img_name)
img = cv2.imread(img_path)
img = cv2.resize(img, img_size)
data.append(img)
labels.append(label)
# 转换为NumPy数组
data = np.array(data) / 255.0 # 归一化
labels = np.array(labels)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=42)
# 将标签转换为one-hot编码
y_train = to_categorical(y_train, num_classes=len(categories))
y_test = to_categorical(y_test, num_classes=len(categories))
```
### 3. 模型构建
```python
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
model = Sequential([
Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 3)),
MaxPooling2D((2, 2)),
Conv2D(64, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Conv2D(128, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Flatten(),
Dense(128, activation='relu'),
Dropout(0.5),
Dense(len(categories), activation='softmax')
])
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
```
### 4. 模型训练
```python
history = model.fit(X_train, y_train, epochs=20, batch_size=32, validation_data=(X_test, y_test))
```
### 5. 模型评估
```python
loss, accuracy = model.evaluate(X_test, y_test)
print(f'Test Loss: {loss}')
print(f'Test Accuracy: {accuracy}')
# 可视化训练过程
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 4))
# 绘制训练和验证损失
plt.subplot(1, 2, 1)
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.legend()
plt.title('Loss')
# 绘制训练和验证准确率
plt.subplot(1, 2, 2)
plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.legend()
plt.title('Accuracy')
plt.show()
```
### 6. 模型保存
```python
model.save('helmet_detection_model.h5')
```
### 7. 模型预测
```python
from tensorflow.keras.models import load_model
# 加载模型
model = load_model('helmet_detection_model.h5')
# 预测新图片
def predict_image(image_path):
img = cv2.imread(image_path)
img = cv2.resize(img, img_size)
img = img / 255.0
img = np.expand_dims(img, axis=0)
prediction = model.predict(img)
predicted_class = np.argmax(prediction, axis=1)[0]
return categories[predicted_class]
# 示例
image_path = 'path_to_new_image.jpg'
result = predict_image(image_path)
print(f'Predicted class: {result}')
```
以上代码涵盖了从数据采集到模型训练、评估和预测的完整流程。希望这对你有所帮助!如果有任何问题,请随时提问。
阅读全文