cross attention transformer

时间: 2023-08-26 17:04:47 浏览: 52
交叉注意力变换器(Cross-Attention Transformer)是一种变换器模型的扩展,用于在自然语言处理任务中处理跨序列的关系。在传统的自注意力变换器(Self-Attention Transformer)中,每个序列中的位置只与该序列内的其他位置相关,而交叉注意力变换器允许不同序列之间的交互。 在交叉注意力变换器中,有两个输入序列A和B。对于输入序列A中的每个位置,模型会通过计算其与序列B中每个位置的注意力分数来获取跨序列的信息。这样,模型可以根据输入序列B中的相关信息对输入序列A进行编码,并将这些信息融合到后续的计算中。 交叉注意力变换器在机器翻译、文本对齐和问答等任务中得到了广泛应用。它可以帮助模型捕捉输入序列之间的语义和语法关系,从而提高模型在复杂任务上的性能。
相关问题

cross-attention Transformer

Cross-Attention指的是Transformer架构中的一种注意力机制,它用于混合两个不同嵌入序列的注意力。这两个序列必须具有相同的维度,并且可以是不同的模式形态,比如文本、声音、图像等。在Cross-Attention中,一个序列作为输入的Q,定义了输出的序列长度,而另一个序列提供输入的K和V。 Cross-Attention与Self-Attention不同之处在于,Cross-Attention的输入来自不同的序列,而Self-Attention的输入来自同一个序列。但除此之外,它们的基本原理是一致的。在Transformer中,Cross-Attention通常是指编码器和解码器之间的交叉注意力层。在这一层中,解码器会对编码器的输出进行注意力调整,以获得与当前解码位置相关的编码器信息。具体的计算过程包括:编码器输入(通常是来自编码器的输出)和解码器输入(已生成的部分序列)被分别表示为enc_inputs和dec_inputs。解码器的每个位置会生成一个查询向量(query),用来在编码器的所有位置进行注意力权重计算。编码器的所有位置会生成一组键向量(keys)和值向量(values)。通过对查询向量和键向量进行点积操作,并通过softmax函数获得注意力权重。注意力权重与值向量相乘,并对结果进行求和,得到编码器调整的输出。这样,Cross-Attention机制帮助解码器能够有效地建模当前生成位置的上下文信息。 <span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [【科研】浅学Cross-attention?](https://blog.csdn.net/MengYa_Dream/article/details/126688503)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [交叉注意力机制CrossAttention](https://blog.csdn.net/m0_63097763/article/details/132293568)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

cross attention详解

Cross attention是一种注意力机制,用于在两个不同的输入序列之间建立联系。它是Transformer模型中用于计算编码器和解码器之间交互的关键部分。 在Transformer模型中,编码器和解码器都由多层自注意力层组成。在自注意力中,每个输入序列中的每个位置都会被赋予一个权重,该权重表示该位置与其他位置的相关性。这些权重由一个注意力函数计算得出。 Cross attention则是将另一个输入序列引入注意力计算中。具体来说,对于解码器中的每个位置,Cross attention会计算该位置与编码器中所有位置之间的相关性,并根据这些相关性为每个编码器位置分配一个权重。这些权重被用于计算加权和,以便为解码器提供编码器状态的信息。 总之,Cross attention可以帮助解码器利用编码器的信息来更好地生成输出序列。在自然语言处理任务中,Cross attention被广泛应用于机器翻译,文本摘要和对话生成等任务中。

相关推荐

Cross attention是指在Transformer模型中的一种注意力机制,它将两个不同的嵌入序列不对称地组合在一起。在这种机制中,其中一个序列被用作查询(Q)输入,而另一个序列被用作键(K)和值(V)输入。通过计算查询序列与键序列之间的相似度,然后使用相似度加权求和得到输出结果。这种机制使得模型能够关注到两个序列之间的交互信息,从而更好地理解序列之间的关系和上下文。 引用中提到的Cross-Attention机制是Transformer模型中的一种应用,它将输入序列分为编码器和解码器两部分。在解码器的每一步中,解码器的当前位置会与编码器的所有位置进行Cross-Attention。这样,解码器可以根据编码器中的信息来生成更准确的输出。这个过程会在解码器的每一步都重复执行,从而实现全局的交互信息传递。 在Cross-Attention中,点之间的关系是通过计算查询序列与键序列的相似度来确定的。这个相似度可以用来判断查询序列中的每个点与键序列中的哪些点最相关。然后,根据相似度的权重对值序列进行加权求和,得到最终的输出结果。通过这种方式,模型可以在不同序列之间实现信息的交互,从而更好地理解点之间的关系。123 #### 引用[.reference_title] - *1* [图解cross attention](https://blog.csdn.net/u010087338/article/details/128622886)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [Self -Attention、Multi-Head Attention、Cross-Attention](https://blog.csdn.net/philosophyatmath/article/details/128013258)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [【人工智能学习】【十六】Self Attention和Transformer](https://download.csdn.net/download/weixin_38702844/14034801)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
在Transformer模型中,MLP layers是指多层感知机层,用于将输入序列映射到更高维度的语义空间。每个MLP层由两个子层组成,一个是多头自注意力子层,另一个是全连接层。这两个子层都使用了残差连接和层归一化。每个子层的输出维度与输入维度相同,为了简化,将嵌入层和所有子层的输出维度统一为d。\[1\] Cross-attention layers是Transformer模型中的一种注意力机制,用于在编码器和解码器之间进行信息交互。在这些层中,解码器的每个位置都会对编码器的所有位置进行注意力计算,以捕捉编码器中与解码器当前位置相关的信息。这种注意力机制有助于提高模型对输入序列的理解和生成准确的输出。\[2\] Transformer layers是指Transformer模型中的编码器和解码器层的堆叠。每个Transformer层由多个MLP layers和cross-attention layers组成。这些层的堆叠使得模型能够逐渐提取和整合输入序列的信息,并生成与之对应的输出序列。通过堆叠多个Transformer层,模型可以更好地捕捉序列中的关系和语义信息,从而提高模型的性能。\[1\]\[2\] #### 引用[.reference_title] - *1* *2* *3* [Transformer - Attention Is All You Need - 跟李沐学AI](https://blog.csdn.net/qq_xuanshuang/article/details/126912990)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

最新推荐

ns_strings_zh.xml

ns_strings_zh.xml

库房物品统计表.xlsx

库房物品统计表.xlsx

用于全志 SOC 的微型 FEL 工具

XFEL系列,用于全志 SOC 的微型 FEL 工具。

基于51单片机的usb键盘设计与实现(1).doc

基于51单片机的usb键盘设计与实现(1).doc

"海洋环境知识提取与表示:专用导航应用体系结构建模"

对海洋环境知识提取和表示的贡献引用此版本:迪厄多娜·察查。对海洋环境知识提取和表示的贡献:提出了一个专门用于导航应用的体系结构。建模和模拟。西布列塔尼大学-布雷斯特,2014年。法语。NNT:2014BRES0118。电话:02148222HAL ID:电话:02148222https://theses.hal.science/tel-02148222提交日期:2019年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire论文/西布列塔尼大学由布列塔尼欧洲大学盖章要获得标题西布列塔尼大学博士(博士)专业:计算机科学海洋科学博士学院对海洋环境知识的提取和表示的贡献体系结构的建议专用于应用程序导航。提交人迪厄多内·察察在联合研究单位编制(EA编号3634)海军学院

react中antd组件库里有个 rangepicker 我需要默认显示的当前月1号到最后一号的数据 要求选择不同月的时候 开始时间为一号 结束时间为选定的那个月的最后一号

你可以使用 RangePicker 的 defaultValue 属性来设置默认值。具体来说,你可以使用 moment.js 库来获取当前月份和最后一天的日期,然后将它们设置为 RangePicker 的 defaultValue。当用户选择不同的月份时,你可以在 onChange 回调中获取用户选择的月份,然后使用 moment.js 计算出该月份的第一天和最后一天,更新 RangePicker 的 value 属性。 以下是示例代码: ```jsx import { useState } from 'react'; import { DatePicker } from 'antd';

基于plc的楼宇恒压供水系统学位论文.doc

基于plc的楼宇恒压供水系统学位论文.doc

"用于对齐和识别的3D模型计算机视觉与模式识别"

表示用于对齐和识别的3D模型马蒂厄·奥布里引用此版本:马蒂厄·奥布里表示用于对齐和识别的3D模型计算机视觉与模式识别[cs.CV].巴黎高等师范学校,2015年。英语NNT:2015ENSU0006。电话:01160300v2HAL Id:tel-01160300https://theses.hal.science/tel-01160300v22018年4月11日提交HAL是一个多学科的开放获取档案馆,用于存放和传播科学研究文件,无论它们是否已这些文件可能来自法国或国外的教学和研究机构,或来自公共或私人研究中心。L’archive ouverte pluridisciplinaire博士之路博士之路博士之路在获得等级时,DOCTEURDE L'ÉCOLE NORMALE SUPERIEURE博士学校ED 386:巴黎中心数学科学Discipline ou spécialité:InformatiquePrésentée et soutenue par:马蒂厄·奥布里le8 may 2015滴度表示用于对齐和识别的Unité derechercheThèse dirigée par陪审团成员équipe WILLOW(CNRS/ENS/INRIA UMR 8548)慕尼黑工业大学(TU Munich�

valueError: Pandas data cast to numpy dtype of object. Check input data with np.asarray(data).

这个错误通常发生在使用 Pandas DataFrame 时,其中包含了一些不能被转换为数字类型的数据。 解决方法是使用 `pd.to_numeric()` 函数将数据转换为数字类型。例如: ```python import pandas as pd import numpy as np # 创建一个包含字符串和数字的 DataFrame df = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 2, '3']}) # 尝试将整个 DataFrame 转换为数字类型会报错 np.asarray(df, dtype=np.float) # 使

基于VC--的五子棋程序设计与实现毕业设计.doc

基于VC--的五子棋程序设计与实现毕业设计.doc