import numpy as np import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Dense from tensorflow.keras.utils import plot_model # 随机生成1000个二维坐标数据 X = np.random.rand(1000, 2) y = np.zeros((1000, 1)) # 根据y=x对数据进行分类 for i in range(1000): if X[i, 1] > X[i, 0]: y[i, 0] = 1 else: y[i, 0] = 0 # 定义神经网络模型,没有隐藏层 model = Sequential() model.add(Dense(1, input_dim=2, activation='sigmoid')) # 编译模型 model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # 训练模型 model.fit(X, y, epochs=50, batch_size=10) # 输出模型的权重数据 weights = model.get_weights() for i, weight in enumerate(weights): print(f'Layer {i} weights:\n{weight}\n') # 绘制随机生成的坐标数据图 plt.scatter(X[:, 0], X[:, 1], c=y[:, 0]) plt.xlabel('X') plt.ylabel('Y') plt.show()修改模型,使训练出的权重自身为整数

时间: 2024-04-12 14:31:56 浏览: 23
要使训练出的权重自身为整数,你可以在训练结束后对权重进行四舍五入,然后重新设置模型的权重。以下是修改后的代码示例: ```python import numpy as np import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Dense from tensorflow.keras.utils import plot_model # 随机生成1000个二维坐标数据 X = np.random.rand(1000, 2) y = np.zeros((1000, 1)) # 根据y=x对数据进行分类 for i in range(1000): if X[i, 1] > X[i, 0]: y[i, 0] = 1 else: y[i, 0] = 0 # 定义神经网络模型,没有隐藏层 model = Sequential() model.add(Dense(1, input_dim=2, activation='sigmoid')) # 编译模型 model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # 训练模型 model.fit(X, y, epochs=50, batch_size=10) # 输出模型的权重数据 weights = model.get_weights() for i, weight in enumerate(weights): print(f'Layer {i} weights:\n{weight}\n') # 四舍五入并设置整数权重 rounded_weights = [np.round(w) for w in weights] model.set_weights(rounded_weights) # 输出四舍五入后的整数权重数据 rounded_weights = model.get_weights() for i, weight in enumerate(rounded_weights): print(f'Layer {i} rounded weights:\n{weight}\n') # 绘制随机生成的坐标数据图 plt.scatter(X[:, 0], X[:, 1], c=y[:, 0]) plt.xlabel('X') plt.ylabel('Y') plt.show() ``` 在这个修改后的代码中,我使用`np.round()`函数对权重进行四舍五入,并将四舍五入后的整数权重重新设置到模型中。然后,我打印出四舍五入后的整数权重数据。请注意,四舍五入可能会对模型的性能产生影响,所以请根据实际需求和问题来决定是否进行四舍五入。

相关推荐

import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt Let us define a plt function for simplicity def plt_loss(x,training_metric,testing_metric,ax,colors = ['b']): ax.plot(x,training_metric,'b',label = 'Train') ax.plot(x,testing_metric,'k',label = 'Test') ax.set_xlabel('Epochs') ax.set_ylabel('Accuracy') plt.legend() plt.grid() plt.show() tf.keras.utils.set_random_seed(1) We import the Minist Dataset using Keras.datasets (train_data, train_labels), (test_data, test_labels) = keras.datasets.mnist.load_data() We first vectorize the image (28*28) into a vector (784) train_data = train_data.reshape(train_data.shape[0],train_data.shape[1]train_data.shape[2]) # 60000784 test_data = test_data.reshape(test_data.shape[0],test_data.shape[1]test_data.shape[2]) # 10000784 We next change label number to a 10 dimensional vector, e.g., 1-> train_labels = keras.utils.to_categorical(train_labels,10) test_labels = keras.utils.to_categorical(test_labels,10) start to build a MLP model N_batch_size = 5000 N_epochs = 100 lr = 0.01 we build a three layer model, 784 -> 64 -> 10 MLP_3 = keras.models.Sequential([ keras.layers.Dense(128, input_shape=(784,),activation='relu'), keras.layers.Dense(64, activation='relu'), keras.layers.Dense(10,activation='softmax') ]) MLP_3.compile( optimizer=keras.optimizers.Adam(lr), loss= 'categorical_crossentropy', metrics = ['accuracy'] ) History = MLP_3.fit(train_data,train_labels, batch_size = N_batch_size, epochs = N_epochs,validation_data=(test_data,test_labels), shuffle=False) train_acc = History.history['accuracy'] test_acc = History.history对于该模型,使用不同数量的训练数据(5000,10000,15000,…,60000,公差=5000的等差数列),绘制训练集和测试集准确率(纵轴)关于训练数据大小(横轴)的曲线

import pandas as pd data = pd.read_csv(C:\Users\Administrator\Desktop\pythonsjwj\weibo_senti_100k.csv') data = data.dropna(); data.shape data.head() import jieba data['data_cut'] = data['review'].apply(lambda x: list(jieba.cut(x))) data.head() with open('stopword.txt','r',encoding = 'utf-8') as f: stop = f.readlines() import re stop = [re.sub(' |\n|\ufeff','',r) for r in stop] data['data_after'] = [[i for i in s if i not in stop] for s in data['data_cut']] data.head() w = [] for i in data['data_after']: w.extend(i) num_data = pd.DataFrame(pd.Series(w).value_counts()) num_data['id'] = list(range(1,len(num_data)+1)) a = lambda x:list(num_data['id'][x]) data['vec'] = data['data_after'].apply(a) data.head() from wordcloud import WordCloud import matplotlib.pyplot as plt num_words = [''.join(i) for i in data['data_after']] num_words = ''.join(num_words) num_words= re.sub(' ','',num_words) num = pd.Series(jieba.lcut(num_words)).value_counts() wc_pic = WordCloud(background_color='white',font_path=r'C:\Windows\Fonts\simhei.ttf').fit_words(num) plt.figure(figsize=(10,10)) plt.imshow(wc_pic) plt.axis('off') plt.show() from sklearn.model_selection import train_test_split from keras.preprocessing import sequence maxlen = 128 vec_data = list(sequence.pad_sequences(data['vec'],maxlen=maxlen)) x,xt,y,yt = train_test_split(vec_data,data['label'],test_size = 0.2,random_state = 123) import numpy as np x = np.array(list(x)) y = np.array(list(y)) xt = np.array(list(xt)) yt = np.array(list(yt)) x=x[:2000,:] y=y[:2000] xt=xt[:500,:] yt=yt[:500] from sklearn.svm import SVC clf = SVC(C=1, kernel = 'linear') clf.fit(x,y) from sklearn.metrics import classification_report test_pre = clf.predict(xt) report = classification_report(yt,test_pre) print(report) from keras.optimizers import SGD, RMSprop, Adagrad from keras.utils import np_utils from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.layers.embeddings import Embedding from keras.layers.recurrent import LSTM, GRU model = Sequential() model.add(Embedding(len(num_data['id'])+1,256)) model.add(Dense(32, activation='sigmoid', input_dim=100)) model.add(LSTM(128)) model.add(Dense(1)) model.add(Activation('sigmoid')) model.summary() import matplotlib.pyplot as plt import matplotlib.image as mpimg from keras.utils import plot_model plot_model(model,to_file='Lstm2.png',show_shapes=True) ls = mpimg.imread('Lstm2.png') plt.imshow(ls) plt.axis('off') plt.show() model.compile(loss='binary_crossentropy',optimizer='Adam',metrics=["accuracy"]) model.fit(x,y,validation_data=(x,y),epochs=15)

zip

最新推荐

recommend-type

2010-2022年 ESG的同群效应().zip

ESG是英文 Environmental(环境)、Social(社会)和Governance(治理)的缩写,是关注企业环境、社会、治理绩效的可持续发展理念和价值观。它并非一种新的投资策略,而是一种关注企业非财务绩效的投资理念。 同群效应,顾名思义,是指企业在环境、社会和治理方面会受到同行业、同类型企业的影响。这种影响可能是正向的,也可能是负向的。企业要善于观察和学习同行业、同类型企业的优秀实践经验,同时也要警惕潜在的负面影响,并采取措施规避风险。 相关数据指标 股票代码 、年份、行业代码、行政区划代码、ESG、E、S、G、同行业同群-ESG_均值、同行业同群-ESG_中位数、同省份同群-ESG_均值、同省份同群-ESG_中位数、同行业同群-E_均值、同行业同群-E_中位数、同省份同群-E_均值、同省份同群-E_中位数、同行业同群-S_均值、同行业同群-S_中位数、同省份同群-S_均值、同省份同群-S_中位数、同行业同群-G_均值、同行业同群-G_中位数、同省份同群-G_均值、同省份同群-G_中位数。
recommend-type

JavaScript中的书签功能以及源代码.zip

JavaScript中的书签功能以及源代码 项目:JavaScript中的书签功能及源代码 书签是一个简单的项目,使用HTML5、CSS和JavaScript编写。这是一个有趣的项目。这个项目是用来添加你想要标记以便以后访问的不同站点的记录。你可以用适当的名称保存你喜欢的任何站点的书签。该项目使用增删改查操作进行管理系统的操作。 关于系统 这个项目简单地使用了HTML、CSS和JavaScript。用户可以添加许多站点的记录,并且可以使用合适的名称。在这里,用户可以添加数据、在需要的时候删除数据,并且也可以在任何时候访问他们标记的站点。这个项目包括大量的JavaScript,用于对项目的某些部分进行验证。 如何运行项目? 你不需要任何类型的本地服务器来运行这个项目,只需要一个浏览器。我们建议你使用现代化的浏览器如Google Chrome和Mozilla Firefox以获得更好的性能。要执行项目,首先在你的浏览器中打开项目,点击index.html文件。 该项目为国外大神项目,可以作为毕业设计的项目,也可以作为大作业项目,不用担心代码重复,设计重复等,如果需要对项目进行修改,需要具备一定基础知识。 注意:如果装有360等杀毒软件,可能会出现误报的情况,源码本身并无病毒,使用源码时可以关闭360,或者添加信任。
recommend-type

前端 -后台架构 1.封装API请求 所引用的资源

引用的资源
recommend-type

数据中台“咨询平台实施”三位一体方案两份文件.pptx

数据中台“咨询平台实施”三位一体方案两份文件.pptx
recommend-type

制造业数字化转型蓝图规划及顶层设计框架两份文件.pptx

制造业数字化转型蓝图规划及顶层设计框架两份文件.pptx
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。