R语言倾向性评分 多分类变量
时间: 2023-10-09 11:07:53 浏览: 196
R语言倾向性评分也可以用于多分类变量。通常,倾向性评分的目标是通过匹配处理组和对照组的个体,来减少处理组和对照组之间的混杂因素。在多分类变量的情况下,可以使用多元logistic回归来计算倾向性评分。倾向性评分也可以通过逻辑回归计算这些协变量的P值,来衡量处理组和对照组之间的差异。然后,使用匹配算法来匹配处理组和对照组的个体,以实现混杂因素的平衡。一个常用的R包是MatchIt,可以用于实现倾向性评分匹配。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [R语言倾向性评分:匹配](https://blog.csdn.net/Ayue0616/article/details/128565548)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *2* [R语言倾向性评分:回归和分层](https://blog.csdn.net/Ayue0616/article/details/128565634)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文