matplotlib histtype
时间: 2024-12-10 16:38:00 浏览: 15
`matplotlib.histtype` 是 Matplotlib 库中的一个参数,用于控制直方图(Histogram)的绘制样式。它定义了每个数据点如何被表示成柱状。Matplotlib 提供了几种内置的 `histtype` 可选值:
1. **bar** (默认):最基本的柱状图,每个数据点对应一列矩形。
2. **step** 或 **stepfilled**:类似于条形图,但是交替地连接数据点形成线图。`step` 表示线条只连接顶点,`stepfilled` 则填充了每个区间的颜色。
3. **barstacked**:将柱状图堆叠在一起,每个组别的一系列柱子共享相同的基线。
4. **hexbin**:使用六边形网格分布的方式展示数据密度,适合高维数据可视化。
5. **density** 或 **probability**: 显示的是累积概率密度函数,而不是频率直方图,通常会有一个累计刻度。
6. ** stairs**:类似 step,但柱子宽度等于 bin width。
通过设置 `histtype` 参数,你可以根据需要选择合适的直方图风格来更好地呈现数据特性。例如:
```python
import matplotlib.pyplot as plt
plt.hist(data, bins=10, histtype='stepfilled')
plt.show()
```
相关问题
matplotlib hist
Matplotlib hist is a function in the Matplotlib library used to create histograms. A histogram is a graphical representation of the distribution of data. It shows the frequency of occurrences of a variable within a given range. The hist function takes an array of data and plots the frequency of the values within a specified number of bins.
The syntax for the Matplotlib hist function is:
```python
matplotlib.pyplot.hist(x, bins=None, range=None, density=False, weights=None, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, color=None, label=None, stacked=False, normed=None, *, data=None, **kwargs)
```
- `x`: This is the input data array.
- `bins`: This specifies the number of bins to use in the histogram. If not specified, the default value is 10.
- `range`: This specifies the range of the data to be plotted.
- `density`: This is a boolean parameter that determines whether to normalize the histogram or not.
- `color`: This specifies the color of the bars in the histogram.
- `label`: This is used to label the histogram.
- `histtype`: This specifies the type of histogram to be plotted, such as ‘bar’, ‘step’, or ‘stepfilled’.
- `orientation`: This specifies the orientation of the bars in the histogram, such as ‘horizontal’ or ‘vertical’.
Here is an example of how to use the Matplotlib hist function:
```python
import matplotlib.pyplot as plt
import numpy as np
# Generate some random data
data = np.random.normal(size=1000)
# Create a histogram using Matplotlib hist
plt.hist(data, bins=30, density=True, color='green', alpha=0.5)
# Add labels and title
plt.xlabel('Data')
plt.ylabel('Frequency')
plt.title('Histogram of Random Data')
# Show the plot
plt.show()
```
This will create a histogram of 1000 randomly generated data points with 30 bins, normalized to a density plot, in green color with an alpha value of 0.5. The plot will also have x and y labels as well as a title.
matplotlib 直方图误差
在绘制 matplotlib 直方图时,有两种常用的误差表示方法:
1. 方差误差(variance error)
方差误差是指每个 bin 中值的方差,可以通过设置 histtype='bar' 和 yerr 参数实现。代码示例:
```python
import matplotlib.pyplot as plt
import numpy as np
# 生成一组数据
x = np.random.normal(0, 1, size=1000)
# 绘制直方图
plt.hist(x, bins=20, histtype='bar', alpha=0.5, color='steelblue', edgecolor='none',
linewidth=1, density=True, label='data', align='left',
yerr=np.sqrt(np.histogram(x, bins=20)[0]))
# 设置图形属性
plt.xlabel('x')
plt.ylabel('frequency')
plt.title('Histogram')
plt.legend()
# 显示图形
plt.show()
```
2. 标准误差(standard error)
标准误差是指每个 bin 中值的标准误差,可以通过设置 histtype='bar' 和 yerr 参数实现。代码示例:
```python
import matplotlib.pyplot as plt
import numpy as np
# 生成一组数据
x = np.random.normal(0, 1, size=1000)
# 绘制直方图
plt.hist(x, bins=20, histtype='bar', alpha=0.5, color='steelblue', edgecolor='none',
linewidth=1, density=True, label='data', align='left',
yerr=np.std(x) / np.sqrt(np.histogram(x, bins=20)[0]))
# 设置图形属性
plt.xlabel('x')
plt.ylabel('frequency')
plt.title('Histogram')
plt.legend()
# 显示图形
plt.show()
```
在上述代码中,yerr 参数的值为每个 bin 的方差或标准误差。如果数据量较大,标准误差更能反映数据的真实情况,因为标准误差受样本量的影响更小。
阅读全文