哈尔小波变换matlab
时间: 2023-11-01 15:08:38 浏览: 99
哈尔小波变换是一种常用的信号处理方法,它可以将图像或信号分解成不同尺度的低频和高频成分。在MATLAB中,可以使用以下代码实现哈尔小波变换:
```matlab
function [LL, LH, HL, HH] = haar_dwt2D(img)
[m, n] = size(img);
for i = 1:m
[L, H] = haar_dwt(img(i, :));
img(i, :) = [L, H];
end
for j = 1:n
[L, H] = haar_dwt(img(:, j));
img(:, j) = [L, H];
end
LL = mat2gray(img(1:m/2, 1:n/2));
LH = mat2gray(img(1:m/2, n/2+1:n));
HL = mat2gray(img(m/2+1:m, 1:n/2));
HH = mat2gray(img(m/2+1:m, n/2+1:n));
end
```
这段代码将输入的图像img进行了二维哈尔小波变换,并返回了低频部分LL、水平高频部分LH、垂直高频部分HL和对角高频部分HH。
相关问题
一维哈尔小波变换matlab
以下是一维哈尔小波变换的MATLAB实现:
```matlab
function [c, l] = HaarWaveletTransform(x)
% x: input signal
% c: wavelet coefficients
% l: bookkeeping vector
N = length(x);
h = [1 1] / sqrt(2);
c = zeros(N, 1);
l = zeros(log2(N), 2);
for i = 1:log2(N)
% Split even and odd elements
x1 = x(1:2:N);
x2 = x(2:2:N);
% Calculate approximation coefficients
a = conv(x1, h);
a = a(1:end-1);
% Calculate detail coefficients
d = conv(x2, h);
d = d(1:end-1);
% Store coefficients and bookkeeping vector
c(1:length(a)) = a;
c(length(a)+1:length(a)+length(d)) = d;
l(i, :) = [length(a) length(d)];
% Update x for next iteration
x = c(1:l(i, 1)+l(i, 2));
end
```
其中,输入信号为x,输出为小波系数c和一个bookkeeping向量l,用于记录每个分解级别的近似系数和细节系数的长度。
阅读全文