pytorch手写体数字识别mnist
时间: 2023-09-08 07:08:35 浏览: 175
pytorch版本手写体识别MNIST.zip
对于手写体数字识别MNIST问题,您可以使用PyTorch来实现。以下是一个简单的代码示例:
首先,导入所需的库:
```
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
```
接下来,定义超参数:
```
input_size = 784
hidden_size = 100
num_classes = 10
num_epochs = 5
batch_size = 100
learning_rate = 0.001
```
然后,加载并预处理数据集:
```
train_dataset = torchvision.datasets.MNIST(root='./data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = torchvision.datasets.MNIST(root='./data',
train=False,
transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
```
定义神经网络模型:
```
class NeuralNet(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNet, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
model = NeuralNet(input_size, hidden_size, num_classes)
```
定义损失函数和优化器:
```
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
```
训练模型:
```
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.reshape(-1, 28*28)
# 前向传播
outputs = model(images)
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
```
在测试集上评估模型:
```
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.reshape(-1, 28*28)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('准确率: {} %'.format(100 * correct / total))
```
这是一个简单的PyTorch实现手写体数字识别MNIST的示例。您可以根据需要进行进一步的调整和改进。
阅读全文