仿照MNIST手写体数字识别,用Pytorch框架实现卷积神经网络对CIFAR-10进行分类实验
时间: 2024-11-25 21:13:20 浏览: 32
在PyTorch框架下,仿照MNIST手写体数字识别来处理更复杂的CIFAR-10数据集是一个常见的深度学习任务。CIFAR-10包含了60000张32x32彩色图像,分为10个类别,这比MNIST更具挑战性,因为图像分辨率更高、颜色更多且类别也增加了。
首先,我们需要导入必要的库并加载CIFAR-10数据集:
```python
import torch
import torchvision
from torchvision import transforms
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128,
shuffle=True, num_workers=2)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=128,
shuffle=False, num_workers=2)
```
接着,我们可以定义一个基于ResNet或VGG这样的卷积神经网络模型,用于图像分类:
```python
import torch.nn as nn
import torch.nn.functional as F
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
# ... 定义卷积层、池化层、全连接层等
def forward(self, x):
# ... 定义前向传播过程
# 实例化模型
model = ConvNet()
```
然后进行训练:
```python
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for epoch in range(num_epochs): # 更改num_epochs为你想要的迭代次数
for images, labels in train_loader:
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 记录并展示训练信息
# ...
# 测试模型
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f"测试准确率: {correct / total}")
```
在这个过程中,你可以调整网络结构、优化器参数以及训练策略来优化性能。
阅读全文