memset(visited,0,sizeof(visited))

时间: 2024-09-13 17:15:29 浏览: 51
`memset(visited, 0, sizeof(visited));` 是C语言中的一个函数调用,用于将一段内存区域中的所有字节设置为指定的值。在这个例子中,它的作用是将 `visited` 数组的所有元素初始化为 `0`。 具体来说,`memset` 函数定义在 `<string.h>` 头文件中,它的原型如下: ```c void *memset(void *s, int c, size_t n); ``` 这里的参数解释如下: - `s` 是一个指向内存区域的指针,即我们想要修改的内存区域的起始地址。 - `c` 是一个 `int` 类型的值,但其实际使用时会被转换成 `unsigned char`,并且这个值会被复制到指定内存区域的每个字节中。 - `n` 是指定要设置字节的数量。 在你给出的代码 `memset(visited, 0, sizeof(visited));` 中,`visited` 是一个数组名,它在表达式中会被转换成指向数组首元素的指针。`sizeof(visited)` 表示 `visited` 数组的总字节大小。因此,这个调用会把 `visited` 数组中每个字节的值都设置为 `0`。 这个操作常用于初始化数组、结构体或内存缓冲区等,以确保它们的内容是确定的初始状态。
相关问题

memset(visited,0,sizeof(visited));

这行代码使用了 C/C++ 标准库中的 memset 函数,用于将一段内存空间清零。 具体来说,第一个参数 visited 是要清零的内存区域的起始地址,第二个参数 0 是要填充的值(这里是 0),第三个参数 sizeof(visited) 是要清零的内存区域的大小(以字节为单位)。 因此,这行代码的作用是将 visited 数组中的所有元素都设置为 0,以便进行下一轮的访问标记。

int main() { scanf("%d",&n); for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { scanf("%d",&Graph[i][j]); } } memset(visited,0,sizeof(visited)); DFS(0); return 0; }

这段代码是一个基础的深度优先搜索(DFS)算法的实现,用于遍历一个无向图。其中,n 表示图中节点的个数,Graph 是一个二维数组,表示图的邻接矩阵。visited 数组用于记录每个节点的访问状态,初始化为 0。 在主函数中,首先通过 scanf() 函数读入节点个数 n 和邻接矩阵 Graph。然后,通过 memset() 函数将 visited 数组中的所有元素初始化为 0。接着,调用 DFS 函数,从节点 0 开始遍历整个图。 DFS 函数的实现过程中,首先将当前节点标记为已访问(visited[i] = 1),然后递归访问当前节点的所有未访问过的邻居节点。当所有邻居节点都被访问过后,回溯到上一个节点,继续访问其它未访问过的节点,直到整个图都被遍历完毕。 需要注意的是,这段代码并没有考虑图中存在多个连通分量的情况,因此只能遍历连通图。如果需要遍历非连通图,需要在主函数中使用循环来遍历每个连通分量。
阅读全文

相关推荐

#include <stdio.h> #include <stdlib.h> #include <string.h> #define MAXV 100 // 最大顶点数 #define INF 0x3f3f3f // 无穷大 char vertex[MAXV][20]; // 顶点名称 int matrix[MAXV][MAXV]; // 邻接矩阵 int visited[MAXV]; // 标记数组,用于深度遍历 int queue[MAXV]; // 队列,用于广度遍历 int front = 0; // 队首指针 int rear = 0; // 队尾指针 struct Edge { int start; // 起点在vertex数组中的下标 int end; // 终点在vertex数组中的下标 int weight; // 权值 }; void createGraph(int m, int n) { int i,j; // 输入顶点名称 for (i = 0; i < m; i++) { scanf("%s", vertex[i]); } // 初始化邻接矩阵 memset(matrix, INF, sizeof(matrix)); // 输入边的信息 for (i = 0; i < n; i++) { char start[20], end[20]; int weight; scanf("%s %s %d", start, end, &weight); int u = -1, v = -1; for (j = 0; j < m; j++) { if (strcmp(start, vertex[j]) == 0) { u = j; } if (strcmp(end, vertex[j]) == 0) { v = j; } if (u != -1 && v != -1) { break; } } matrix[u][v] = matrix[v][u] = weight; } } void dfs(int u) { int v; visited[u] = 1; printf("%s ", vertex[u]); for (v = 0; v < MAXV; v++) { if (matrix[u][v] != INF && visited[v] == 0) { dfs(v); } } } void bfs(int u, int m) { int v,w; printf("%s ", vertex[u]); visited[u] = 1; queue[rear++] = u; while (front != rear) { v = queue[front++]; for (w = 0; w < m; w++) { if (matrix[v][w] != INF && visited[w] == 0) { printf("%s ", vertex[w]); visited[w] = 1; queue[rear++] = w; } } } } int main() { int m, n,i; scanf("%d %d", &m, &n); createGraph(m, n); memset(visited, 0, sizeof(visited)); char start[20]; scanf("%s", start); int u = -1; for (i = 0; i < m; i++) { if (strcmp(start, vertex[i]) == 0) { u = i; break; } } dfs(u); printf("\n"); memset(visited, 0, sizeof(visited)); front = rear = 0; bfs(u, m); printf("\n"); return 0; }看看这段代码有没有问题,并给出修改后的代码

#include <stdio.h> // 判断无向图是否为欧拉图,如果是,返回1,否则返回0 int isEulerGraph(int r[][N], int n) { int flag = 1; for(int i = 0; i < n && flag; i++) { int sum = 0; for(int j = 0; j < n; j++) { if(r[i][j]) sum++; } if(sum % 2 == 1) flag = 0; } return flag; } // 判断有向图是否为欧拉图,如果是,返回1,否则返回0 int isEulerDigraph(int r[][N], int n) { int flag = 1; for(int i = 0; i < n && flag; i++) { int sum1 = 0, sum2 = 0; for(int j = 0; j < n; j++) { if(r[i][j]) sum1++; if(r[j][i]) sum2++; } if(sum1 != sum2) flag = 0; } return flag; } int count = 0, cur = 0, r[N][N], sequence[M]; // 求无向图的欧拉路 void try1(int k) { int i, pre = cur; for(i = 0; i < N; i++) { if(r[cur][i]) { r[cur][i] = 0; r[i][cur] = 0; cur = sequence[k] = i; if(k < M - 1) try1(k + 1); else { count++; prt1(); } r[cur][pre] = 1; r[pre][cur] = 1; cur = pre; } } } // 求有向图的欧拉路 void try2(int k) { int i, pre = cur; for(i = 0; i < N; i++) { if(r[cur][i]) { r[cur][i] = 0; cur = sequence[k] = i; if(k < M - 1) try2(k + 1); else { count++; prt1(); } r[cur][pre] = 1; cur = pre; } } } // 主函数 int main() { int n, m, i, j; scanf("%d%d", &n, &m); memset(r, 0, sizeof(r)); for(i = 0; i < m; i++) { int x, y; scanf("%d%d", &x, &y); r[x][y] = 1; r[y][x] = 1; } if(isEulerGraph(r, n)) { memset(sequence, -1, sizeof(sequence)); try1(0); printf("Total number of Euler paths: %d\n", count); } else if(isEulerDigraph(r, n)) { memset(sequence, -1, sizeof(sequence)); try2(0); printf("Total number of Euler paths: %d\n", count); } else printf("This graph is not an Euler graph.\n"); return 0; }你看看哪里错了,修改一下这个代码,

最新推荐

recommend-type

判断一个无向图是否为连通图的方法

memset(visited, 0, sizeof(visited)); dfs(0, n, adj); for (int i = 0; i ; i++) { if (!visited[i]) return 0; } return 1; } int main() { int n, i, j; scanf("%d", &n); int adj[N][N]; for (i = 0...
recommend-type

这是华为手机的汇智动漫AR游戏软件,仅适用于华为手机哦,内无任何广告

这是华为手机的汇智动漫AR游戏软件,仅适用于华为手机哦,内无任何广告
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

CC-LINK远程IO模块在环境监控中的应用:技术与案例探讨

![CC-LINK](https://www.mitsubishielectric.com/fa/products/cnt/plcnet/pmerit/cclink_ie/concept/img/main_img.jpg) # 摘要 CC-LINK远程IO模块作为一种先进的工业通信技术,在环境监控系统中具有广泛应用。本文首先概述了CC-LINK远程IO模块的基本概念及其在环境监控系统中的基础理论,包括硬件组成、软件架构及技术优势。随后,详细介绍了其在实时监控与远程控制、系统集成与配置、安全维护方面的具体实践应用。案例分析部分深入探讨了CC-LINK模块在不同环境监控场景中的应用效果与技术解决
recommend-type

Linux C开发中,如何判断open()函数创建的fd没有被close()

在Linux C开发中,判断`open()`函数创建的文件描述符(file descriptor, fd)是否已经被`close()`通常涉及到检查该fd是否处于有效的状态。你可以通过以下几个步骤进行: 1. **检查fd是否为-1**:如果fd值为-1,这通常表示错误发生或者文件操作已经完成,它可能已经被关闭。 ```c if (fd == -1) { // 处理失败或已关闭的情况 } ``` 2. **检查errno**:系统调用返回-1并设置errno时,可以查阅相关的错误码来判断问题。比如,`ENOTTY`可能表示尝试访问非块设备,而这可能是由`close()`造成的。