遗传算法求解tsp问题代码
时间: 2024-08-14 14:02:52 浏览: 63
遗传算法是一种基于自然选择和遗传机制的优化搜索技术,常用于解决复杂问题,如旅行商问题(Traveling Salesman Problem, TSP)。TSP是一个经典的组合优化问题,目标是找到访问一组城市并返回起点的最短路径。
以下是使用Python的一个简单遗传算法求解TSP问题的代码概述:
```python
import numpy as np
# 定义遗传算法相关参数
pop_size = 100 # 群体大小
num_generations = 1000 # 迭代次数
elite_ratio = 0.1 # 保留精英比例
mutation_rate = 0.01 # 变异概率
def initialize_population(city_list):
return [np.random.permutation(city_list) for _ in range(pop_size)]
def fitness(individual, city_list):
# 计算路径长度作为适应度函数
return sum(cities.distance(city_list[i], city_list[j]) for i, j in zip(individual, individual[1:] + [individual]))
def selection(population, fitness_values):
elite_indices = np.argsort(fitness_values)[:int(elite_ratio * pop_size)]
parents = np.concatenate([population[elite_indices], population[np.random.choice(range(len(population)), size=(pop_size - len(elite_indices),))]])
return parents
def crossover(parents):
offspring = []
for _ in range(int(pop_size / 2)):
parent1, parent2 = np.random.choice(parents, size=2)
cut_point = np.random.randint(0, len(parent1) - 1)
child = np.concatenate((parent1[:cut_point], parent2[cut_point:]))
offspring.append(child)
return offspring
def mutation(offspring, mutation_rate):
mutated_offspring = []
for child in offspring:
if np.random.rand() < mutation_rate:
swap_points = np.random.choice(range(len(child)), size=2, replace=False)
child[[swap_points[0], swap_points]] = child[[swap_points, swap_points]]
mutated_offspring.append(child)
return mutated_offspring
def genetic_algorithm(city_list):
population = initialize_population(city_list)
for _ in range(num_generations):
fitness_values = [fitness(individual, city_list) for individual in population]
parents = selection(population, fitness_values)
offspring = crossover(parents)
offspring = mutation(offspring, mutation_rate)
# 更新种群
population = offspring + [parent for parent in parents if parent not in offspring]
best_individual = min(population, key=lambda x: fitness(x, city_list))
return best_individual, fitness(best_individual, city_list)
# 示例城市列表
cities = ... # 城市坐标数据结构
best_route, shortest_distance = genetic_algorithm(cities)
print("Best route:", best_route)
print("Shortest distance:", shortest_distance)
```
这个代码只是一个基本框架,实际应用中可能需要根据具体的城市数据结构(如经纬度表示)进行调整,并可能加入更多细节,比如解编码、初始化策略等。运行这个程序后,它将返回一条近似最优的旅行路线以及对应的总距离。
阅读全文