import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans path_file = r"C:\Users\Lenovo\Desktop\TESTDATA.TXT" def loadFile(path_file): dataList=[] recordMat = loadFile(path_file) k = 4 X = np.array(recordMat) plt.figure() plt.axis([np.min(X[:,0])-1, np.max(X[:,0])+1, np.min(X[:,1])-1, np.max(X[:,1])+1]) plt.grid(True) colors = ['r', 'g', 'b','c'] markers = ['o', 's', 'D', '+'] kmeans_model = KMeans(n_clusters=k, init='k-means++') kmeans_model.fit(X) for i, l in enumerate(kmeans_model.labels_): plt.plot(X[i][0], X[i][1], color=colors[l],marker=markers[l],ls='None') plt.title('K = %s' %(k)) plt.show()报错怎么修改?
时间: 2024-01-30 10:03:28 浏览: 116
要修正这个错误,你需要在 `loadFile` 函数中添加返回值。此外,你需要确保 `recordMat` 是一个有效的二维数组,在传递给 `np.array()` 之前对其进行正确的处理。
下面是修改后的代码示例:
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
path_file = r"C:\Users\Lenovo\Desktop\TESTDATA.TXT"
def loadFile(path_file):
dataList = []
# 在这里编写读取文件的代码,并将数据存储在dataList中
return dataList
recordMat = loadFile(path_file)
k = 4
X = np.array(recordMat)
plt.figure()
plt.axis([np.min(X[:,0])-1,
np.max(X[:,0])+1,
np.min(X[:,1])-1,
np.max(X[:,1])+1])
plt.grid(True)
colors = ['r', 'g', 'b', 'c']
markers = ['o', 's', 'D', '+']
kmeans_model = KMeans(n_clusters=k, init='k-means++')
kmeans_model.fit(X)
for i, l in enumerate(kmeans_model.labels_):
plt.plot(X[i][0], X[i][1], color=colors[l], marker=markers[l], ls='None')
plt.title('K = %s' % (k))
plt.show()
```
请确保在 `loadFile` 函数中添加正确的文件读取代码,并将数据存储在 `dataList` 中。另外,你还可以根据实际情况调整颜色和标记符号的列表 `colors` 和 `markers`,以适应你的数据可视化需求。
阅读全文