impala/druid/presto/kylin/clickhouse/greenplum

时间: 2023-09-29 13:00:41 浏览: 187
impala是一种高性能分析型数据库,它基于Hadoop生态系统,可以快速执行复杂的查询。它使用列式存储、编译器技术和并行查询执行来实现高性能。 druid是一个快速、实时的数据存储和分析引擎,它适用于大规模的实时数据处理和探索式分析。它支持实时数据摄取、查询和可视化,可用于数据仪表盘和实时报告等应用。 presto是一种开源的分布式SQL查询引擎,它可以快速查询多种数据源,包括Hadoop、MySQL等。它具有高度可伸缩性和灵活性,可用于快速进行复杂的数据分析和联机查询。 kylin是一种开源的分布式分析引擎,它可以快速处理大规模数据集。它支持多维分析和复杂的OLAP查询,并提供了数据立方体和预计算功能,用于加速查询速度。 clickhouse是一种列式数据库管理系统,专门用于高性能分析型应用。它支持实时查询和高并发访问,并具有低延迟和高容量的优势,适用于大规模的数据分析和数据仪表盘等应用。 greenplum是一种高性能的并行关系数据库管理系统,适用于大规模数据仓库和分析型应用。它具有高度可伸缩性、并行查询和优化的特性,用于高速查询和处理大规模数据。 总的来说,这些数据库和查询引擎都旨在提供高性能和灵活性,以满足大规模数据分析和查询的需求,但它们在技术架构、数据存储方式和查询优化等方面存在一些差异。选择适合特定需求的数据库和查询引擎取决于实际情况和使用场景。
相关问题

druid/impala/presto/spark sql/kylin/elasticsearch功能对比

### 回答1: Druid、Impala、Presto、Spark SQL、Kylin和Elasticsearch都是大数据处理领域的常见工具,它们都有自己的特点和优势。 Druid是一种高性能、列式存储的数据仓库,适用于实时数据分析和查询。它支持快速的聚合查询和多维分析,可以处理大规模的数据集。 Impala是一种基于内存的分布式SQL查询引擎,适用于交互式查询和数据分析。它可以直接查询Hadoop中的数据,支持复杂的SQL查询和高并发查询。 Presto是一种分布式SQL查询引擎,适用于交互式查询和数据分析。它可以查询多种数据源,包括Hadoop、关系型数据库和NoSQL数据库,支持复杂的SQL查询和高并发查询。 Spark SQL是一种基于Spark的SQL查询引擎,适用于大规模数据处理和分析。它可以查询多种数据源,包括Hadoop、关系型数据库和NoSQL数据库,支持复杂的SQL查询和高并发查询。 Kylin是一种OLAP引擎,适用于多维分析和查询。它可以处理大规模的数据集,支持复杂的多维查询和聚合查询。 Elasticsearch是一种分布式搜索和分析引擎,适用于实时数据分析和查询。它可以处理大规模的数据集,支持复杂的搜索和聚合查询。 总的来说,这些工具都有各自的特点和优势,根据具体的需求和场景选择合适的工具是很重要的。 ### 回答2: Druid、Impala、Presto、Spark SQL、Kylin和Elasticsearch,这些都是当前流行的数据存储和分析工具。它们都具备不同的分析功能和优点,适合于不同的数据分析场景。下面将从数据处理能力、性能、数据存储结构等方面对这些工具进行详细对比。 1. 数据处理能力 Druid是一种基于列存储的分布式实时分析系统,支持快速的离线批处理和流式数据处理。Druid是专门用于OLAP(在线分析处理)场景的数据存储和查询工具,支持高速聚合、过滤、分组、排序和多维查询等。Druid的查询速度非常快,适合于需要快速响应的实时分析场景。 Impala是一种基于内存的MPP(Massively Parallel Processing)分布式数据库管理系统,可以快速处理大量数据查询请求。Impala支持完整的SQL语言,而且其查询速度很快,是一种适合于SQL分析的工具。 Presto是一种分布式SQL查询引擎,与Impala类似,支持完整的SQL语言,并具有很高的查询速度。Presto可以查询多个数据源,例如Hadoop、MySQL、Hive等,是一个很好的数据分析工具。 Spark SQL是Apache Spark中的SQL引擎,支持完整的SQL语言和查询,并具有较高的处理速度。与Impala和Presto不同,Spark SQL可以处理离线和实时数据,并且提供了丰富的机器学习和图形处理功能。 Kylin是一个开源的分布式分析引擎,适用于大数据下的OLAP分析场景。Kylin使用多层架构来处理超大型数据,支持多维查询,并且可以处理PB级别的数据。 Elasticsearch是一个开源的全文搜索引擎,其功能包括文档索引并支持分布式实时搜索和分析。Elasticsearch具有高度的可伸缩性和性能,可以很好地处理PB级别的数据,适用于文本分析和实时搜索等场景。 2. 性能 Druid、Impala、Presto、Spark SQL、Kylin和Elasticsearch在处理大数据时都具有优异的性能。而Impala、Presto和Spark SQL的处理速度较快,且具有较好的并行计算能力和内置的压缩算法,支持并行多核计算和数据分片。 3. 数据存储结构 Druid采用了列存储的数据结构,而且使用了一种称为“旋转位图”的优化技术,这种技术可以大大提高查询性能。 Impala、Presto和Spark SQL采用的都是行级数据存储结构,这种结构可以使数据的读写效率更高。 Kylin使用多层架构的方式来缓存数据,以达到快速响应和计算,并且支持OLAP的多维度查询。 Elasticsearch采用倒排索引和分片式数据存储结构,以提高数据搜索的效率,并且支持实时查询和聚合查询功能。 综上所述,Druid、Impala、Presto、Spark SQL、Kylin和Elasticsearch都具有独特的优点和应用场景,可以满足不同的数据存储和分析需要。对于处理海量数据并需要实时响应的场景,可以选择Druid;对于SQL分析场景,可以选择Impala、Presto或Spark SQL;对于多维度OLAP分析场景,可以选择Kylin;而对于全文搜索和实时分析场景,则可以选择Elasticsearch。 ### 回答3: Druid/Impala/Presto/Spark SQL/Kylin/Elasticsearch都是非常流行的分布式查询引擎,它们可以在处理大规模数据时提供非常好的性能和速度。以下是它们的功能对比。 1. Druid由于其高速的查询引擎和极高的查询效率在实时大数据处理方面非常突出,它主要支持OLAP查询,而且提供了高度的可伸缩性和可扩展性,支持海量数据的查询和分析。 2. Impala是一种支持SQL的高速分析工具,内存存储,利用Hadoop内存进行查询,具有高度的并行度和可扩展性,可以快速处理大规模数据。 3. Presto是一种由Facebook开发的分布式SQL查询引擎,它使用内存来处理数据,支持多个数据源,提供了高度的扩展性和可伸缩性,具有非常好的性能和速度。 4. Spark SQL是Apache Spark的一部分,主要用于大规模数据处理,同时支持SQL和非SQL语言,它的查询引擎建立在Spark的内存计算引擎之上,支持多种数据存储器。 5. Kylin是一个OLAP引擎,它使用Apache Hadoop构建,具有高效的查询处理能力,可通过多种方式查询数据,支持多个数据源,提供的查询速度非常快。 6. Elasticsearch是一种搜索引擎,它使用Lucene搜索库,主要用于全文搜索、日志分析和复杂数据分析,提供了高效的搜索和聚合功能,可以在实时或批量处理模式下使用。 综上所述,Druid、Impala、Presto、Spark SQL、Kylin、Elasticsearch各有优缺点,不同的场景和需求需要结合实际情况选择使用。

- 对比druid,clickhouse,kylin,kawq,presto,spark sql,impala等主流开源离线数据分析引擎

这些主流开源离线数据分析引擎都有各自的特点和优势: 1. Druid:适合实时数据分析,支持快速的数据切片和聚合,能够快速响应查询请求,但不支持复杂的SQL查询。 2. ClickHouse:适合海量数据的离线分析,支持复杂的SQL查询和高效的数据压缩,能够快速处理大规模数据,但需要较高的硬件配置。 3. Kylin:适合多维数据分析,支持复杂的OLAP查询和多维数据模型,能够快速生成报表和可视化分析结果。 4. KAWQ:适合数据仓库的构建和管理,支持ETL和数据清洗等功能,能够快速构建数据仓库和数据集市。 5. Presto:适合分布式数据查询和分析,支持多种数据源和复杂的SQL查询,能够快速处理大规模数据,但需要较高的硬件配置。 6. Spark SQL:适合大规模数据处理和分析,支持复杂的SQL查询和机器学习算法,能够快速处理大规模数据,但需要较高的硬件配置。 7. Impala:适合高性能的数据分析和查询,支持复杂的SQL查询和高效的数据压缩,能够快速处理大规模数据,但需要较高的硬件配置。
阅读全文

相关推荐

最新推荐

recommend-type

Python连接Impala实现步骤解析

在Python编程中,有时我们需要与大数据处理系统进行交互,例如Apache Impala。Impala是一种高性能的SQL查询引擎,适用于实时分析存储在Hadoop中的大规模数据集。本篇文章将详细解析如何使用Python连接到Impala,并...
recommend-type

大数据基础操作说明-HADOOP HIVE IMPALA

大数据基础操作说明-HADOOP HIVE IMPALA Hadoop 是一个基于分布式存储和计算的开源框架,Hive 是基于 Hadoop 的一个数据仓库工具,Impala 是一个高性能的分布式SQL查询引擎。在这篇文章中,我们将会了解 Hadoop ...
recommend-type

impala快速入门手册

Impala 快速入门手册 Impala 是一款基于 Apache Hadoop 的高性能、实时查询引擎,能够快速处理大量数据。下面是 Impala 的快速入门手册,旨在指导新手快速使用 Impala 做数据分析工作。 1. 什么是 Impala? ...
recommend-type

Impala安装,亲测

在 Impala 配置完成后,需要将 Hadoop 的配置文件拷贝到 `/etc/impala/conf` 目录下,包括 `core-site.xml`、`hdfs-site.xml` 和 `hive-site.xml`。 在 `core-site.xml` 文件中,需要增加以下配置信息: ``` ...
recommend-type

Kyligence_Enterprise_3_4-zh.pdf

Kylin支持多种数据源,包括Hive、Kafka、RDBMS(如Greenplum、Oracle等)、Impala等。数据导入过程可以是全量导入,也可以按日期/时间、流式或自定义增量方式进行。每种数据源都有对应的导入策略,以满足不同场景的...
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。