那有关平衡动态分布自适应的那部分相对应的代码呢
时间: 2024-11-24 10:40:56 浏览: 3
MATLAB代码同步压缩变换(SST)
关于平衡动态分布自适应(Balanced Dynamic Distribution Adaptation, BDDA)的部分,具体的实现代码通常会涉及以下几个关键步骤:
1. **数据预处理**:对源域和目标域的数据进行预处理,包括滑窗分段、标准化等。
2. **特征提取**:使用改进的卷积神经网络(CNN)提取特征。
3. **最大均值差异(MMD)计算**:计算源域和目标域之间的MMD距离。
4. **平衡因子计算**:动态调整平衡因子 \(\mu\)。
5. **优化目标**:构建优化目标函数,并使用优化算法(如Adam)进行优化。
6. **分类器**:使用K-Nearest Neighbors (KNN)或其他分类器进行最终的分类。
以下是一个简化版本的Python代码示例,展示了如何实现BDDA的关键部分:
```python
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import accuracy_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
# 定义改进的卷积神经网络
class WaveletConvNet(nn.Module):
def __init__(self):
super(WaveletConvNet, self).__init__()
self.conv1 = nn.Conv1d(1, 2048, kernel_size=27)
self.pool1 = nn.MaxPool1d(kernel_size=16)
self.conv2 = nn.Conv1d(2048, 128, kernel_size=27)
self.pool2 = nn.MaxPool1d(kernel_size=16)
self.fc1 = nn.Linear(128 * 27, 216)
self.fc2 = nn.Linear(216, 64)
self.fc3 = nn.Linear(64, 4)
self.relu = nn.ReLU()
self.softmax = nn.Softmax(dim=1)
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.pool1(x)
x = self.relu(self.conv2(x))
x = self.pool2(x)
x = x.view(-1, 128 * 27)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.softmax(self.fc3(x))
return x
# 计算MMD距离
def compute_mmd(Xs, Xt):
n_s = Xs.shape[0]
n_t = Xt.shape[0]
Kxx = torch.exp(-torch.cdist(Xs, Xs) / (2 * (Xs.std() ** 2)))
Kyy = torch.exp(-torch.cdist(Xt, Xt) / (2 * (Xt.std() ** 2)))
Kxy = torch.exp(-torch.cdist(Xs, Xt) / (2 * (Xs.std() ** 2)))
mmd = Kxx.mean() + Kyy.mean() - 2 * Kxy.mean()
return mmd
# 计算平衡因子
def compute_mu(e_h):
A_distance = 2 * (1 - 2 * e_h)
mu = A_distance / (A_distance + 1)
return mu
# 主程序
def main():
# 加载数据
X_source, y_source = load_data('source_data_path')
X_target, y_target = load_data('target_data_path')
# 数据预处理
X_source, X_val, y_source, y_val = train_test_split(X_source, y_source, test_size=0.3, random_state=42)
X_source, X_target = preprocess_data(X_source, X_target)
# 初始化模型和优化器
model = WaveletConvNet()
optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=0.99)
criterion = nn.CrossEntropyLoss()
# 训练模型
for epoch in range(100):
model.train()
optimizer.zero_grad()
# 提取特征
features_source = model.features(X_source)
features_target = model.features(X_target)
# 计算MMD距离
mmd_loss = compute_mmd(features_source, features_target)
# 计算分类损失
outputs = model(X_source)
classification_loss = criterion(outputs, y_source)
# 计算总损失
total_loss = classification_loss + 0.2 * mmd_loss
# 反向传播和优化
total_loss.backward()
optimizer.step()
# 验证模型
if epoch % 10 == 0:
model.eval()
with torch.no_grad():
val_outputs = model(X_val)
val_predictions = torch.argmax(val_outputs, dim=1)
val_accuracy = accuracy_score(y_val, val_predictions)
print(f'Epoch [{epoch+1}/100], Validation Accuracy: {val_accuracy:.4f}')
# 测试模型
model.eval()
with torch.no_grad():
target_features = model.features(X_target)
knn_classifier = KNeighborsClassifier(n_neighbors=3)
knn_classifier.fit(features_source.detach().numpy(), y_source.numpy())
target_predictions = knn_classifier.predict(target_features.detach().numpy())
target_accuracy = accuracy_score(y_target, target_predictions)
print(f'Target Domain Accuracy: {target_accuracy:.4f}')
if __name__ == "__main__":
main()
```
### 说明:
1. **WaveletConvNet**: 定义了一个改进的卷积神经网络,包括卷积层、池化层和全连接层。
2. **compute_mmd**: 计算源域和目标域之间的最大均值差异(MMD)。
3. **compute_mu**: 计算平衡因子 \(\mu\)。
4. **main**: 主程序,包括数据加载、预处理、模型训练和测试。
请注意,这只是一个简化的示例,实际应用中可能需要更多的细节和优化,例如更复杂的预处理步骤、更精细的模型调参、更高级的优化策略等。
阅读全文