用递归求小球在10m的高度上放下,每次弹起的高度为上一次的一半,求第n次小球弹起的高度,用c 语言实现

时间: 2024-11-27 22:21:58 浏览: 26
递归可以用来解决这个问题,思路是定义一个函数,它接受一个参数 n,表示是第 n 次落下。第一次弹起的高度是初始高度减去地面,之后每次弹起的高度都是前一次的一半。下面是 C 语言实现这个功能的示例: ```c #include <stdio.h> // 定义一个递归函数计算第 n 次弹起的高度 double ballHeight(int n, double initialHeight) { if (n == 1) { // 第一次落下,直接返回高度 return initialHeight; } else { // 弹起的高度是前一次的一半 return ballHeight(n - 1, initialHeight / 2); } } int main() { const double groundLevel = 0; // 地面高度 int n = 5; // 假设我们想知道第 5 次弹起的高度 double heightAfterNthBounce = ballHeight(n, 10); // 初始高度为 10m printf("第 %d 次弹起后,小球的高度是 %.2f 米。\n", n, heightAfterNthBounce + groundLevel); //
相关问题

java案例:有一个小球从10m的高空落下,每次落下再弹起到原来高度的一半,问当小球 第10次弹起到最高点时,一共走过了多长距离?

这个问题可以用递归的方式来解决。因为每次小球落下后都会弹起至前一次落地点的一半高度,直到它达到地面不再反弹。我们可以创建一个函数来计算每一次弹跳的总路程。 首先,我们设定初始条件,第一次落地的距离就是10米。对于后续的每一次,由于是从上一次的一半高度落下的,所以每次的路程等于上一次路程加上当前的高度差。 设第n次落地时,路程为S_n,则有: - S_1 = 10m (第一次) - 对于 n > 1, S_n = S_{n-1} + (前一次高度 / 2) 现在,我们需要计算第10次落地时的总路程。让我们编写这个函数: ```java public double calculateTotalDistance(int height, int n) { if (n == 1) { // 首次落地 return height; } else { // 计算总路程为上一次的路程加上本次下落的距离 return calculateTotalDistance(height / 2, n - 1) + height / 2; } } double totalDistanceAfter10thBounce = calculateTotalDistance(10, 10); ``` 运行这个函数后,`totalDistanceAfter10thBounce` 就会得到小球在第10次弹起到最高点时总共走过多少米。

小球 200 米高处落下,每次弹起的高度是原高度的一半,请问第 4 次弹起后,小球的高 度是多少,总路径是多少?

在这个问题中,我们可以看到有两个不同的场景描述小球的运动过程: 1. C语言实现小球从100米落下(实际题目中是200米但只到10次弹跳),每次弹起是原有高度的一半[^1]: 根据题意,第一次落地后弹回50米,第二次是25米。由于循环从10开始倒计数到1(最后一次是落地而非弹跳),我们可以计算在第4次弹起之前的高度以及累积的高度。 - 第4次后弹回至最高点,因为是最后一次弹起:\( 25 \times 2 = 50 \) 米 2. JavaScript模拟的单个小球(也是200米高,每次落下的比例为0.5),直到第7次弹起[^2]: 这里我们只需要调用函数`fn`来得到第四次弹起后的高度,因为我们从0到4(JavaScript的弹起从1开始计数): ```javascript function fn(n){ return n > 0 ? fn(n - 1) * 0.5 : 200; // 因为第1次落下就是200米 } var fourthLaunchHeight = fn(4); ``` `fourthLaunchHeight`的结果会给我们第四次落地前的高度,但这个模型不会自动累加路径长度。为了总路程,我们还需要从头累计每一落一弹: 总路径可以通过公式\( 2 * (初高度 + 弹跳次数 * 初高度 \div 2^n) \),因为每个来回的总距离是一次跳跃高度的两倍: \( \text{路径长度} = 2 * (200 + 1 + 2+...+ (2\text{次下落})) \) 然而,上述JavaScript示例直接计算的是第七次弹起后,与题目要求不符,所以直接套用这个计算可能有问题。对于第4次弹起,如果我们继续使用上述JavaScript思路,则我们需要重新考虑逻辑。 由于给定的信息中缺乏对第4次之后精确路径累积的计算,这里假设我们仍按每次降落一半高度的递减规律。让我们先找到第4次弹起后的小球高度: ```python # 计算第4次落下后的半程高度(不考虑回弹,因为回落后将是之前的双倍) initial_height = 200 # 小球初高度 height_after_fourth_jump = initial_height / (2**4) ``` 现在,如果我们要计算路径累积(即总高度),则无法准确地使用JavaScript函数`fn()`,因为它用于单向递归而不是连续的跳弹,且起点是从1算的而非地面。因此,我们需要手动跟踪每个跳动的累加分段: ```python # 初始化路径累计到当前位置为2*首次落下的半程,因为第一次跳动就是下降高度本身 total_path = 2 * height_after_fourth_jump for i in range(5, 11): # 考虑第5次开始的跳弹过程,直到第10次(包含第10次) current_height = height_after_fourth_jump total_path += (2**i) * current_height # 累加跳跃分段 print(f"第四次弹起后的高度: {height_after_fourth_jump:.2f} 米,总路径长度: {total_path} 米") ``` 需要注意:以上Python示例并不完美,因为在JavaScript中可能有更合适的方法去计算连续弹起的精确路径,但在提供的信息范围内,这是比较合理的推断。如果你希望获得准确的路径累积,则需要额外的信息或者明确的数学公式,否则计算将基于近似假设(例如,假设每个弹射的行程等于下降距离)。
阅读全文

相关推荐

最新推荐

recommend-type

python递归函数求n的阶乘,优缺点及递归次数设置方式

在本例中,我们将探讨如何使用递归函数计算一个数的阶乘,以及递归函数的优缺点和如何设置递归深度。 首先,让我们看看如何用Python编写一个计算阶乘的递归函数。阶乘的定义是对于非负整数n,n的阶乘表示为所有小于...
recommend-type

Python入门程序 函数应用(判断素数、递归求n的阶乘、x的n次方、最大最小值、插入排序法)

在本篇Python入门程序中,我们关注了五个关键的函数应用:判断素数、递归求n的阶乘、计算x的n次方、找出数列中的最大最小值以及实现插入排序法。 1. **判断素数**: 判断一个数是否为素数的函数`isprime(n)`通过...
recommend-type

MyBatis之自查询使用递归实现 N级联动效果(两种实现方式)

在第一种方式中,我们可以使用递归函数来实现 N级联动效果。递归函数是一种特殊的函数,它可以调用自身以便实现某些复杂的逻辑。在Java中,我们可以使用递归函数来计算斐波那契数列,如下所示: ```java public ...
recommend-type

AIMP2 .NET 互操作插件

AIMP2 .NET 互操作插件允许使用托管代码(C#、VB 等)为 AIMP2 编写插件。
recommend-type

工厂垂直提升机sw14可编辑全套技术资料100%好用.zip

工厂垂直提升机sw14可编辑全套技术资料100%好用.zip
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。