lenet-5识别手写数字c++
时间: 2023-09-09 13:01:09 浏览: 214
LeNet-5是一种经典的卷积神经网络,用于手写数字的识别。它在1998年由Yann LeCun等人提出,旨在通过学习感知到的局部特征来实现数字的自动识别和分类。
LeNet-5主要由两个重要部分组成:卷积神经网络(CNN)和全连接层。
输入图像首先经过两个卷积层和池化层,用于提取图像的特征。卷积层通过滑动窗口计算每个窗口中的特征,然后池化层对特征图进行降采样,减少计算量和参数个数。随后,通过几个全连接层对提取的特征进行分类,最终输出层得到识别结果。
在训练阶段,LeNet-5使用反向传播算法来更新网络权重,最小化训练样本与目标标签之间的损失函数。该损失函数可衡量网络对不同数字的分类准确性。
为了识别手写数字'c',我们需要准备一组训练样本包含手写数字'c'的图像及其标签,并将这些样本输入LeNet-5进行训练。训练过程中,网络将学习到特定于'c'的特征,以便能够准确地区分出'c'与其他数字。
完成训练后,我们可以用测试集对LeNet-5进行评估。将手写数字'c'的图像输入网络,根据输出层的预测结果即可进行识别判断。如果网络的输出结果与'c'标签匹配,则说明LeNet-5成功地识别了手写数字'c'。
总而言之,LeNet-5是一种使用卷积神经网络实现手写数字识别的经典模型。通过训练和调整网络权重,LeNet-5能够识别手写数字'c'。
相关问题
用C++写一个LeNet-5识别手写数字的程序并带注释
好的,下面是一个简单的LeNet-5识别手写数字的C++程序,带有注释解释每个部分的功能和作用。代码仅供参考。
```c++
#include <iostream>
#include <fstream>
#include <vector>
#include <cmath>
using namespace std;
// 定义LeNet-5的每一层的结构
struct ConvLayer {
int in_channels, out_channels, kernel_size, stride, padding;
vector<vector<vector<double>>> weights;
vector<double> bias;
};
struct PoolLayer {
int kernel_size, stride;
};
struct FCLayer {
int in_features, out_features;
vector<vector<double>> weights;
vector<double> bias;
};
// 定义LeNet-5的整体结构
class LeNet5 {
private:
ConvLayer conv1, conv2;
PoolLayer pool1, pool2;
FCLayer fc1, fc2, fc3;
// 激活函数
double relu(double x) {
return max(0.0, x);
}
// Softmax函数
vector<double> softmax(vector<double> x) {
vector<double> result(x.size());
double sum = 0.0;
for (int i = 0; i < x.size(); i++) {
result[i] = exp(x[i]);
sum += result[i];
}
for (int i = 0; i < x.size(); i++) {
result[i] = result[i] / sum;
}
return result;
}
// 卷积运算
vector<vector<vector<double>>> convolve(vector<vector<vector<double>>> input, ConvLayer conv) {
int in_height = input.size(), in_width = input[0].size();
int out_height = (in_height - conv.kernel_size + 2 * conv.padding) / conv.stride + 1;
int out_width = (in_width - conv.kernel_size + 2 * conv.padding) / conv.stride + 1;
vector<vector<vector<double>>> output(conv.out_channels, vector<vector<double>>(out_height, vector<double>(out_width, 0.0)));
for (int i = 0; i < conv.out_channels; i++) {
for (int j = 0; j < out_height; j++) {
for (int k = 0; k < out_width; k++) {
double sum = 0.0;
for (int l = 0; l < conv.in_channels; l++) {
for (int m = 0; m < conv.kernel_size; m++) {
for (int n = 0; n < conv.kernel_size; n++) {
int p = j * conv.stride + m - conv.padding;
int q = k * conv.stride + n - conv.padding;
if (p >= 0 && p < in_height && q >= 0 && q < in_width) {
sum += input[l][p][q] * conv.weights[i][l][m * conv.kernel_size + n];
}
}
}
}
sum += conv.bias[i];
output[i][j][k] = relu(sum);
}
}
}
return output;
}
// 池化运算
vector<vector<vector<double>>> pool(vector<vector<vector<double>>> input, PoolLayer pool) {
int in_height = input[0].size(), in_width = input[0][0].size();
int out_height = (in_height - pool.kernel_size) / pool.stride + 1;
int out_width = (in_width - pool.kernel_size) / pool.stride + 1;
vector<vector<vector<double>>> output(input.size(), vector<vector<double>>(out_height, vector<double>(out_width, 0.0)));
for (int i = 0; i < input.size(); i++) {
for (int j = 0; j < out_height; j++) {
for (int k = 0; k < out_width; k++) {
double max_val = -1e9;
for (int l = 0; l < pool.kernel_size; l++) {
for (int m = 0; m < pool.kernel_size; m++) {
int p = j * pool.stride + l;
int q = k * pool.stride + m;
if (input[i][p][q] > max_val) {
max_val = input[i][p][q];
}
}
}
output[i][j][k] = max_val;
}
}
}
return output;
}
// 全连接层运算
vector<double> fc(vector<double> input, FCLayer fc) {
vector<double> output(fc.out_features, 0.0);
for (int i = 0; i < fc.out_features; i++) {
double sum = 0.0;
for (int j = 0; j < fc.in_features; j++) {
sum += input[j] * fc.weights[i][j];
}
sum += fc.bias[i];
output[i] = relu(sum);
}
return output;
}
public:
LeNet5() {
// 初始化每一层的结构
conv1.in_channels = 1;
conv1.out_channels = 6;
conv1.kernel_size = 5;
conv1.stride = 1;
conv1.padding = 0;
conv1.weights = vector<vector<vector<double>>>(conv1.out_channels, vector<vector<double>>(conv1.in_channels, vector<double>(conv1.kernel_size * conv1.kernel_size, 0.0)));
conv1.bias = vector<double>(conv1.out_channels, 0.0);
conv2.in_channels = 6;
conv2.out_channels = 16;
conv2.kernel_size = 5;
conv2.stride = 1;
conv2.padding = 0;
conv2.weights = vector<vector<vector<double>>>(conv2.out_channels, vector<vector<double>>(conv2.in_channels, vector<double>(conv2.kernel_size * conv2.kernel_size, 0.0)));
conv2.bias = vector<double>(conv2.out_channels, 0.0);
pool1.kernel_size = 2;
pool1.stride = 2;
pool2.kernel_size = 2;
pool2.stride = 2;
fc1.in_features = 16 * 5 * 5;
fc1.out_features = 120;
fc1.weights = vector<vector<double>>(fc1.out_features, vector<double>(fc1.in_features, 0.0));
fc1.bias = vector<double>(fc1.out_features, 0.0);
fc2.in_features = 120;
fc2.out_features = 84;
fc2.weights = vector<vector<double>>(fc2.out_features, vector<double>(fc2.in_features, 0.0));
fc2.bias = vector<double>(fc2.out_features, 0.0);
fc3.in_features = 84;
fc3.out_features = 10;
fc3.weights = vector<vector<double>>(fc3.out_features, vector<double>(fc3.in_features, 0.0));
fc3.bias = vector<double>(fc3.out_features, 0.0);
}
// 加载权重参数
void load_weights(string filename) {
ifstream fin(filename);
for (int i = 0; i < conv1.out_channels; i++) {
for (int j = 0; j < conv1.in_channels; j++) {
for (int k = 0; k < conv1.kernel_size * conv1.kernel_size; k++) {
fin >> conv1.weights[i][j][k];
}
}
}
for (int i = 0; i < conv1.out_channels; i++) {
fin >> conv1.bias[i];
}
for (int i = 0; i < conv2.out_channels; i++) {
for (int j = 0; j < conv2.in_channels; j++) {
for (int k = 0; k < conv2.kernel_size * conv2.kernel_size; k++) {
fin >> conv2.weights[i][j][k];
}
}
}
for (int i = 0; i < conv2.out_channels; i++) {
fin >> conv2.bias[i];
}
for (int i = 0; i < fc1.out_features; i++) {
for (int j = 0; j < fc1.in_features; j++) {
fin >> fc1.weights[i][j];
}
}
for (int i = 0; i < fc1.out_features; i++) {
fin >> fc1.bias[i];
}
for (int i = 0; i < fc2.out_features; i++) {
for (int j = 0; j < fc2.in_features; j++) {
fin >> fc2.weights[i][j];
}
}
for (int i = 0; i < fc2.out_features; i++) {
fin >> fc2.bias[i];
}
for (int i = 0; i < fc3.out_features; i++) {
for (int j = 0; j < fc3.in_features; j++) {
fin >> fc3.weights[i][j];
}
}
for (int i = 0; i < fc3.out_features; i++) {
fin >> fc3.bias[i];
}
fin.close();
}
// 前向传播
vector<double> forward(vector<vector<double>> input) {
// 卷积层1
auto conv1_output = convolve(vector<vector<vector<double>>>{input}, conv1);
// 激活函数
for (int i = 0; i < conv1_output.size(); i++) {
for (int j = 0; j < conv1_output[i].size(); j++) {
for (int k = 0; k < conv1_output[i][j].size(); k++) {
conv1_output[i][j][k] = relu(conv1_output[i][j][k]);
}
}
}
// 池化层1
auto pool1_output = pool(conv1_output, pool1);
// 卷积层2
auto conv2_output = convolve(pool1_output, conv2);
// 激活函数
for (int i = 0; i < conv2_output.size(); i++) {
for (int j = 0; j < conv2_output[i].size(); j++) {
for (int k = 0; k < conv2_output[i][j].size(); k++) {
conv2_output[i][j][k] = relu(conv2_output[i][j][k]);
}
}
}
// 池化层2
auto pool2_output = pool(conv2_output, pool2);
// 将池化层的输出展平
vector<double> fc_input(pool2_output.size() * pool2_output[0].size() * pool2_output[0][0].size());
int idx = 0;
for (int i = 0; i < pool2_output.size(); i++) {
for (int j = 0; j < pool2_output[i].size(); j++) {
for (int k = 0; k < pool2_output[i][j].size(); k++) {
fc_input[idx++] = pool2_output[i][j][k];
}
}
}
// 全连接层1
auto fc1_output = fc(fc_input, fc1);
// 全连接层2
auto fc2_output = fc(fc1_output, fc2);
// 全连接层3
auto fc3_output = fc(fc2_output, fc3);
// Softmax
return softmax(fc3_output);
}
};
int main() {
LeNet5 model;
model.load_weights("weights.txt");
// 读取测试数据
ifstream fin("test_data.txt");
int num_samples;
fin >> num_samples;
int correct = 0;
for (int i = 0; i < num_samples; i++) {
vector<vector<double>> input(28, vector<double>(28, 0.0));
for (int j = 0; j < 28; j++) {
for (int k = 0; k < 28; k++) {
fin >> input[j][k];
}
}
vector<double> output = model.forward(input);
int pred = 0;
double max_val = -1e9;
for (int j = 0; j < output.size(); j++) {
if (output[j] > max_val) {
max_val = output[j];
pred = j;
}
}
cout << "Predicted: " << pred << endl;
int label;
fin >> label;
if (pred == label) {
correct++;
}
}
fin.close();
cout << "Accuracy: " << (double)correct / num_samples << endl;
return 0;
}
```
这个程序实现了一个简单的LeNet-5模型,可以识别手写数字。具体来说,它包含了卷积层、池化层和全连接层。在程序中,我们使用了一些结构体来表示每一层的结构,方便后续的实现和维护。在主函数中,我们首先加载了预先训练好的权重参数,然后读取测试数据,对每个样本进行前向传播,并计算模型的准确率。
c++实现lenet-5
LeNet-5是一个经典的卷积神经网络模型,由Yann LeCun等人提出。主要用于手写数字识别。
LeNet-5的架构包含了七个层:输入层,卷积层C1,池化层S2,卷积层C3,池化层S4,全连接层F5和输出层。
首先,我们需要将输入图像进行预处理,对其进行归一化处理,使像素值在0到1之间。然后将归一化后的图像作为输入层。
接下来是卷积层C1,该层使用了6个5×5大小的卷积核,每个卷积核都使用Sigmoid激活函数。C1层的输出为6个28×28的特征图。
然后是池化层S2,该层采用2×2大小的池化窗口,选取最大值作为池化结果。S2层的输出为6个14×14的特征图。
接下来是卷积层C3,该层使用16个5×5大小的卷积核,每个卷积核都使用Sigmoid激活函数。C3层的输出为16个10×10的特征图。
然后是池化层S4,该层采用2×2大小的池化窗口,选取最大值作为池化结果。S4层的输出为16个5×5的特征图。
下一步是全连接层F5,该层有120个神经元,每个神经元都与S4层的所有特征图相连。F5层采用Sigmoid激活函数。
最后是输出层,输出层有10个神经元,表示0到9的十个数字,根据输出层神经元的值进行分类。
LeNet-5的训练过程包括前向传播和反向传播。通过计算损失函数来评估模型的性能,然后使用反向传播算法更新模型的权重和偏置。
为了实现LeNet-5模型,我们需要使用深度学习框架,如TensorFlow或PyTorch,来定义和训练网络模型。通过将输入数据和标签输入到模型中,并使用优化算法进行训练,最终得到训练好的模型。
LeNet-5的设计和实现为后续的卷积神经网络模型提供了基础和指导,是深度学习领域的重要里程碑。
阅读全文