用sage编写Rabin-Miller算法对素数的检测
时间: 2024-10-25 19:11:08 浏览: 25
Miller-Rabin算法源码
4星 · 用户满意度95%
Sage是一个开源数学软件包,它提供了广泛的数学函数和工具,包括用于处理各种算法,如Rabin-Miller素数检验算法。Rabin-Miller算法是一种用于判断一个大整数是否可能是质数的概率性测试方法。以下是使用Sage如何实现该算法的一个简单示例:
```python
from sage.crypto.number_theory.prime import is_prime
def rabin_miller_test(n, k=5): # k通常是5次试验,可根据需要调整
if n < 2 or (n % 2 == 0 and n != 2):
return False, "Input must be an odd number greater than 1."
# Miller-Rabin test implementation
witnesses = [] # List of witness integers
for _ in range(k):
a = random.randint(2, n - 2) # Choose a random integer as the witness
x = pow(a, n - 1, n) # Compute x = a^(n-1) mod n
if x != 1 and x != n - 1: # Not a trivial divisor
for _ in range(log2(n)): # Perform modular squaring
x = x * x % n
if x == n - 1:
break
else: # Squaring did not reach 1
witnesses.append(False)
return False, f"{a} is a witness that {n} might not be prime."
if len(witnesses) == k: # All tests passed
witnesses.append(True)
return True, None
return witnesses, f"Possible witnesses: {witnesses}"
# 使用示例
num = int(input("Enter a number to test: "))
result, message = rabin_miller_test(num)
if result:
print(f"{num} is probably prime ({message}).")
else:
print(f"{num} is composite ({message}).")
```
在这个例子中,我们首先检查输入是否满足Rabin-Miller的要求,然后通过多次随机选择测试点(`a`),计算`a^(n-1) mod n`,如果结果不符合特定模式,则认为`n`不是素数。请注意,虽然这个测试可以提供很高的概率保证,但并非绝对确定。
阅读全文