FocusiOU损失函数代码
时间: 2024-12-27 07:29:49 浏览: 5
### FocusIoU Loss Function 实现
FocusIoU 是一种改进版的 IoU 损失函数,在处理物体检测任务中的边界框回归时表现出色。该损失函数不仅考虑了交并比(IoU),还引入了额外的因素来提升模型性能。
下面是一个 Python 版本的 FocusIoU 损失函数实现:
```python
import torch
import torch.nn.functional as F
def focus_iou_loss(pred_boxes, target_boxes):
"""
计算两个边界框之间的FocusIoU损失
参数:
pred_boxes (Tensor): 预测边框,形状为[N, 4]
target_boxes (Tensor): 目标边框,形状为[N, 4]
返回:
Tensor: 平均FocusIoU损失值
"""
# 获取预测和目标边框坐标
pred_x1 = pred_boxes[:, 0]
pred_y1 = pred_boxes[:, 1]
pred_x2 = pred_boxes[:, 2]
pred_y2 = pred_boxes[:, 3]
target_x1 = target_boxes[:, 0]
target_y1 = target_boxes[:, 1]
target_x2 = target_boxes[:, 2]
target_y2 = target_boxes[:, 3]
# 计算面积
area_pred = (pred_x2 - pred_x1) * (pred_y2 - pred_y1)
area_target = (target_x2 - target_x1) * (target_y2 - target_y1)
# 找到重叠区域的最大最小坐标
inter_xmin = torch.max(pred_x1, target_x1)
inter_ymin = torch.max(pred_y1, target_y1)
inter_xmax = torch.min(pred_x2, target_x2)
inter_ymax = torch.min(pred_y2, target_y2)
# 判断是否有交叉部分
inter_area = torch.clamp(inter_xmax - inter_xmin, min=0) * \
torch.clamp(inter_ymax - inter_ymin, min=0)
union_area = area_pred + area_target - inter_area
iou = inter_area / union_area
giou_term = ((inter_xmax - inter_xmin) * (inter_ymax - inter_ymin)) / union_area
focus_iou = iou - (giou_term ** 2)
return 1 - focus_iou.mean()
```
此代码实现了 FocusIoU 损失函数,其中包含了对边界框坐标的解析以及 IoU 和 GIoU 组件的计算[^1]。
阅读全文