void DHT11ReadHumiture(uint8_t Arr[])

时间: 2024-01-21 09:04:38 浏览: 22
根据提供的引用内容,`void DHT11ReadHumiture(uint8_t Arr[])`是一个函数,用于读取DHT11传感器的温湿度数据,并将数据存储在一个数组中。以下是一个示例代码,演示了如何使用该函数: ```c void DHT11ReadHumiture(uint8_t Arr[]) { int hum, temp; DHT11_Init(); if (DHT11_Read(&hum, &temp) != 0) { // 读取错误处理 DHT11_Init(); } else { Arr[0] = hum; // 存储湿度数据 Arr[1] = temp; // 存储温度数据 } } ``` 该函数首先初始化DHT11传感器,然后通过`DHT11_Read`函数读取温湿度数据。如果读取失败,会重新初始化传感器。如果读取成功,将湿度数据存储在数组的第一个元素中,将温度数据存储在数组的第二个元素中。
相关问题

uint8_t DHT11_R_Data(uint8_t *temp, uint8_t *humi);怎么用

函数`uint8_t DHT11_R_Data(uint8_t *temp, uint8_t *humi)`是一个用于读取DHT11传感器数据的函数。它接受两个指针参数`temp`和`humi`,用于存储读取到的温度和湿度数据。 使用该函数的步骤如下: 1. 在调用该函数之前,需要先定义两个变量用于存储温度和湿度数据,例如: ``` uint8_t temperature; uint8_t humidity; ``` 2. 调用函数时,将上述定义的变量的地址作为参数传递给函数,例如: ``` DHT11_R_Data(&temperature, &humidity); ``` 3. 函数执行后,会将读取到的温度和湿度数据存储到传入的变量中。 请注意,使用该函数前需要确保已经正确初始化了DHT11传感器,并且连接正确。另外,该函数返回一个`uint8_t`类型的值,可能用于表示读取数据的状态或错误码。

uint8_t DHT11_Read_Data(uint8_t *temp,uint8_t *humi)该怎么用?

您可以使用函数`DHT11_Read_Data`来读取DHT11传感器的温度和湿度数据。函数需要两个参数:`temp`和`humi`,它们都是指向`uint8_t`类型的指针。 您可以按照以下步骤使用该函数: 1. 在适当的位置定义两个`uint8_t`类型的变量,用于存储温度和湿度数据。例如:`uint8_t temperature, humidity;` 2. 调用`DHT11_Read_Data`函数,将温度和湿度变量的地址作为参数传递给函数。例如:`DHT11_Read_Data(&temperature, &humidity);` 3. 函数将会在读取成功后,将温度和湿度数据存储到相应的变量中。 请注意,具体的实现细节和函数定义可能会因您使用的开发环境或库而略有不同。建议查阅相关文档或参考示例代码以确保正确使用该函数。

相关推荐

#include "dht11.h" void Delay_us(uint16_t delay) { __HAL_TIM_DISABLE(&htim3); __HAL_TIM_SET_COUNTER(&htim3,0); __HAL_TIM_ENABLE(&htim3); uint16_t curCnt=0; while(1) { curCnt=__HAL_TIM_GET_COUNTER(&htim3); if(curCnt>=delay) break; } __HAL_TIM_DISABLE(&htim3); } void DHT11_OUT(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = GPIO_PIN_8; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); } void DHT11_IN(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = GPIO_PIN_8; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); } void DHT11_Strat(void) { DHT11_OUT(); HAL_GPIO_WritePin(GPIOB,GPIO_PIN_8,GPIO_PIN_RESET); HAL_Delay(20); HAL_GPIO_WritePin(GPIOB,GPIO_PIN_8,GPIO_PIN_SET); Delay_us(30); } uint8_t DHT11_Check(void) { uint8_t retry = 0 ; DHT11_IN(); while(GPIO_PIN_SET == HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8) && retry <100) { retry++; Delay_us(1);//1us } if(retry>=100) {return 1;} else retry = 0 ; while(GPIO_PIN_RESET == HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8) && retry<100) { retry++; Delay_us(1);//1us } if(retry>=100) {return 1;} return 0 ; } uint8_t DHT11_Read_Bit(void) { uint8_t retry = 0 ; while(GPIO_PIN_SET==HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) && retry <100) { retry++; Delay_us(1); } retry = 0 ; while(GPIO_PIN_RESET==HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) && retry<100) { retry++; Delay_us(1); } Delay_us(40); if(GPIO_PIN_SET==HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8)) return 1; else return 0 ; } uint8_t DHT11_Read_Byte(void) { uint8_t i , dat ; dat = 0 ; for(i=0; i<8; i++) { dat <<= 1; dat |= DHT11_Read_Bit(); } return dat ; } uint8_t DHT11_Read_Data(uint8_t* temp , uint8_t* humi) { uint8_t buf[5]; uint8_t i; DHT11_Strat(); if(DHT11_Check() == 0) { for(i=0; i<5; i++) { buf[i] = DHT11_Read_Byte(); } if(buf[0]+buf[1]+buf[2]+buf[3] == buf[4]) { *humi = buf[0]; *temp = buf[2]; } }else return 1; return 0 ; } void func_1() { uint8_t temperature = 1 ; uint8_t humidity = 1; uint8_t aTXbuf[32] ; while(1){ DHT11_Read_Data(&temperature , &humidity); sprintf((char*)aTXbuf,"%d , %d %% \r\n" ,temperature ,humidity); HAL_UART_Transmit(&huart1, aTXbuf, strlen((const char*)aTXbuf), 200); HAL_Delay(5000); } } int temperature_humidity_device_control(protocol_package_t *pk) { printf("temperature_humidity_device_control\r\n"); if(pk->function == 0x16 && pk->data[0] == 0x00) { printf("temperature_humidity_device_control success\r\n"); uint8_t temperature = 1 ; uint8_t humidity = 1; uint8_t aTXbuf[32] ; //DHT11_Read_Data(&temperature , &humidity); pk->data[0] = 0x35; } return 0; }改错

#include "dht11.h" #define DHT11_GPIO_PORT GPIOB #define DHT11_GPIO_PIN GPIO_PIN_8 static void DHT11_DelayUs(uint32_t us) { __HAL_TIM_SET_COUNTER(&htim1, 0); while (__HAL_TIM_GET_COUNTER(&htim1) < us); } static uint8_t DHT11_ReadBit(void) { uint8_t retry = 0; while (HAL_GPIO_ReadPin(DHT11_GPIO_PORT, DHT11_GPIO_PIN) == GPIO_PIN_RESET) { if (++retry > 100) { return DHT11_TIMEOUT; } DHT11_DelayUs(1); } retry = 0; while (HAL_GPIO_ReadPin(DHT11_GPIO_PORT, DHT11_GPIO_PIN) == GPIO_PIN_SET) { if (++retry > 100) { return DHT11_TIMEOUT; } DHT11_DelayUs(1); } return GPIO_PIN_SET; } uint8_t DHT11_ReadData(DHT11_Data_TypeDef *data) { uint8_t buffer[5] = {0}; uint8_t i, j; /* 发送起始信号 */ HAL_GPIO_WritePin(DHT11_GPIO_PORT, DHT11_GPIO_PIN, GPIO_PIN_RESET); DHT11_DelayUs(18000); HAL_GPIO_WritePin(DHT11_GPIO_PORT, DHT11_GPIO_PIN, GPIO_PIN_SET); DHT11_DelayUs(40); /* 等待应答信号 */ if (HAL_GPIO_ReadPin(DHT11_GPIO_PORT, DHT11_GPIO_PIN) == GPIO_PIN_RESET) { while (HAL_GPIO_ReadPin(DHT11_GPIO_PORT, DHT11_GPIO_PIN) == GPIO_PIN_RESET); while (HAL_GPIO_ReadPin(DHT11_GPIO_PORT, DHT11_GPIO_PIN) == GPIO_PIN_SET); for (i = 0; i < 5; i++) { for (j = 0; j < 8; j++) { if (DHT11_ReadBit() == DHT11_TIMEOUT) { return DHT11_TIMEOUT; } DHT11_DelayUs(30); if (HAL_GPIO_ReadPin(DHT11_GPIO_PORT, DHT11_GPIO_PIN) == GPIO_PIN_SET) { buffer[i] |= (1 << (7 - j)); } } } if ((buffer[0] + buffer[1] + buffer[2] + buffer[3]) == buffer[4]) { data->Humidity = buffer[0]; data->Temperature = buffer[2]; return DHT11_OK; } else { return DHT11_ERROR; } } return DHT11_TIMEOUT; } void DHT11_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* 使能GPIOB时钟 */ __HAL_RCC_GPIOB_CLK_ENABLE(); /* 配置GPIOB8引脚为输入模式 */ GPIO_InitStruct.Pin = DHT11_GPIO_PIN; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(DHT11_GPIO_PORT, &GPIO_InitStruct); }

#include "dht11.h" #include "protocol.h" #include "lcd.h" #include "string.h" #include <stdio.h> #include "gpio.h" #include "usart.h" #define DHT11_DATA_LOW_TIMEOUT 80 #define DHT11_DATA_HIGH_TIMEOUT 90 #define DHT11_RESPONSE_TIMEOUT 40 #define DHT11_BIT_TIMEOUT 60 DHT11_StatusTypeDef DHT11_ReadData(DHT11_Data_TypeDef* data) { uint8_t buffer[5] = {0}; uint8_t i, j; uint32_t count; // 发送开始信号 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_SET); HAL_Delay(18); HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_RESET); // 等待DHT11响应 count = 0; while (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) == GPIO_PIN_RESET) { count++; if (count > DHT11_RESPONSE_TIMEOUT) { return DHT11_ERROR; } HAL_Delay(1); } count = 0; while (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) == GPIO_PIN_SET) { count++; if (count > DHT11_RESPONSE_TIMEOUT) { return DHT11_ERROR; } HAL_Delay(1); } // 读取40位数据 for (i = 0; i < 40; i++) { count = 0; while (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) == GPIO_PIN_RESET) { count++; if (count > DHT11_DATA_LOW_TIMEOUT) { return DHT11_ERROR; } } count = 0; while (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) == GPIO_PIN_SET) { count++; if (count > DHT11_DATA_HIGH_TIMEOUT) { return DHT11_ERROR; } } buffer[i / 8] <<= 1; if (count > DHT11_BIT_TIMEOUT) { buffer[i / 8] |= 0x01; } } // 验证数据是否正确 if (buffer[4] != (buffer[0] + buffer[1] + buffer[2] + buffer[3])) { return DHT11_ERROR; } // 解析数据 data->humidity = buffer[0]; data->temp_int = buffer[2]; data->temp_dec = buffer[3]; return DHT11_OK; } void text_func_1() { DHT11_Data_TypeDef data; DHT11_ReadData(&data); printf("-->"); printf("%d.%c %d%%",data.temp_int, data.temp_dec, data.humidity); HAL_Delay(1000); if (DHT11_ReadData(&data) == DHT11_OK){ char str[16]; sprintf(str, "T:%d.%dC H:%d%%", data.temp_int, data.temp_dec, data.humidity); HAL_UART_Transmit(&huart1, (uint8_t*)str, strlen(str), HAL_MAX_DELAY); HAL_Delay(1000); } }改错

最新推荐

recommend-type

DHT11温湿度传感器应用及感受

朋友送的DHT11传感器,用于湿度和温度测量,网上找了资料看,相对的控制较为简单,花了点时间把程序写了出来,用1602做显示,单总线控制的器件,基本上没什么指令,只有一个启动信号,然后是连续读出40bit的数据,...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法自动优化指南:解放算法调优,提升效率

![MATLAB遗传算法自动优化指南:解放算法调优,提升效率](https://help-static-aliyun-doc.aliyuncs.com/assets/img/zh-CN/8487939061/p208348.png) # 1. MATLAB遗传算法概述** 遗传算法是一种受生物进化启发的优化算法,它模拟了自然选择和遗传的过程。在MATLAB中,遗传算法工具箱提供了丰富的函数和类,用于创建和运行遗传算法。 **1.1 遗传算法的基本原理** 遗传算法的工作原理如下: - **初始化:**创建由随机个体组成的初始种群。 - **评估:**根据目标函数计算每个个体的适应度。 -
recommend-type

failed to register layer: ApplyLayer exit status 1 stdout: stderr: archive/tar: invalid tar header

很抱歉听到这个问题。这个错误通常是由于Docker镜像损坏或Docker存储库中缺少所需的图层引起的。您可以尝试以下几种方法来解决这个问题: 1. 清理Docker镜像和容器:使用命令“docker system prune”清理不再使用的Docker对象。 2. 检查Docker存储库:确保您正在使用可靠的Docker存储库,并检查是否存在所有必需的图层。 3. 重新下载Docker镜像:如果您确定问题是由于损坏的Docker镜像引起的,则可以尝试重新下载Docker镜像。 4. 更新Docker版本:如果您使用的是旧版Docker,则可能会出现此问题。尝试更新到最新版本的Docke
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB遗传算法大数据优化指南:应对海量数据挑战,挖掘数据价值

![MATLAB遗传算法大数据优化指南:应对海量数据挑战,挖掘数据价值](https://ask.qcloudimg.com/http-save/8934644/c34d493439acba451f8547f22d50e1b4.png) # 1. 遗传算法简介** 遗传算法(GA)是一种受进化论启发的优化算法,它模拟了生物体的自然选择和遗传过程。GA通过以下步骤迭代地搜索最优解: - **初始化:**随机生成一个种群,每个个体代表一个潜在的解决方案。 - **选择:**根据个体的适应度(目标函数值)选择适合繁殖的个体。 - **交叉:**将选定的个体配对并交换基因,产生新的个体。 - **
recommend-type

File path = new File(ResourceUtils.getURL("classpath:static").getPath());

这段代码的作用是获取项目中静态资源文件夹的路径,其中`ResourceUtils.getURL("classpath:static")`表示获取`classpath`下的`static`文件夹的URL,`getPath()`方法则将URL转换成文件路径。最终得到的`File`对象可以用于读取或写入静态资源文件。需要注意的是,这段代码只适用于Spring Boot项目,因为它使用了Spring的`ResourceUtils`类。如果不是Spring Boot项目,可能需要使用其他方式获取静态资源文件夹的路径。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。