1)建立用户(登录帐号)U1、U2、U3、+U4、U5、U6、U7和对应的数据库学生课程系统的用户dbu1、dbu2、dbu3、dbu 4、dbyu5、dbu6、dbu7。

时间: 2023-11-29 20:45:55 浏览: 149
以下是在MySQL中创建用户和对应数据库的SQL语句: ```sql -- 创建用户U1及其对应的数据库dbu1 CREATE USER 'U1'@'localhost' IDENTIFIED BY 'password'; CREATE DATABASE dbu1; GRANT ALL PRIVILEGES ON dbu1.* TO 'U1'@'localhost'; -- 创建用户U2及其对应的数据库dbu2 CREATE USER 'U2'@'localhost' IDENTIFIED BY 'password'; CREATE DATABASE dbu2; GRANT ALL PRIVILEGES ON dbu2.* TO 'U2'@'localhost'; -- 创建用户U3及其对应的数据库dbu3 CREATE USER 'U3'@'localhost' IDENTIFIED BY 'password'; CREATE DATABASE dbu3; GRANT ALL PRIVILEGES ON dbu3.* TO 'U3'@'localhost'; -- 创建用户U4及其对应的数据库dbu4 CREATE USER 'U4'@'localhost' IDENTIFIED BY 'password'; CREATE DATABASE dbu4; GRANT ALL PRIVILEGES ON dbu4.* TO 'U4'@'localhost'; -- 创建用户U5及其对应的数据库dbu5 CREATE USER 'U5'@'localhost' IDENTIFIED BY 'password'; CREATE DATABASE dbu5; GRANT ALL PRIVILEGES ON dbu5.* TO 'U5'@'localhost'; -- 创建用户U6及其对应的数据库dbu6 CREATE USER 'U6'@'localhost' IDENTIFIED BY 'password'; CREATE DATABASE dbu6; GRANT ALL PRIVILEGES ON dbu6.* TO 'U6'@'localhost'; -- 创建用户U7及其对应的数据库dbu7 CREATE USER 'U7'@'localhost' IDENTIFIED BY 'password'; CREATE DATABASE dbu7; GRANT ALL PRIVILEGES ON dbu7.* TO 'U7'@'localhost'; ``` 注意:上述SQL语句中的'password'应该替换为实际的密码。
阅读全文

相关推荐

import numpy import numpy as np import tensorflow as tf import matplotlib.pyplot as plt import os import cv2 as cv from sklearn.model_selection import train_test_split def getImgeAndLabels(path): #存放训练图片 facesSamples = [] #存放图片id ids = [] #存放路径和名称 imagPaths = [] for f in os.listdir(path): #连接文件夹路径和图片名称 result = os.path.join(path,f) #存入 imagPaths.append(result) face_detector = cv.CascadeClassifier(r'D:\pyh\envs\OpenCV\Lib\site-packages\cv2\data\haarcascade_frontalface_default.xml') for imagPath in imagPaths: #读取每一种图片 img = cv.imread(imagPath) PIL_img = cv.cvtColor(img,cv.COLOR_BGR2GRAY) #获取每张图片的id 利用os.path.split的方法将路径和名称分割开 id = int(os.path.split(imagPath)[1].split('.')[0]) facesSamples.append(PIL_img) ids.append(id) return facesSamples,ids if __name__ == '__main__': path = './data/' faces,ids = getImgeAndLabels(path) x = np.array(faces,dtype = np.uint8) y = np.array(ids,dtype = np.uint8) x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=0) model = tf.keras.models.Sequential([ tf.keras.layers.Input(shape=(112, 92)), #拉平转化为一维数据 tf.keras.layers.Flatten(input_shape=(112,92)), #定义神经网络全连接层,参数是神经元个数以及使用激活函数 tf.keras.layers.Dense(200,activation='relu'), #设置遗忘率 # tf.keras.layers.Dropout(0.2), #定义最终输出(输出10种类别,softmax实现分类的概率分布) tf.keras.layers.Dense(16,activation='softmax') ]) model.compile( optimizer = 'adam', loss = 'sparse_categorical_crossentropy', metrics = ['accuracy']) print("模型*************") model.fit(x,y,epochs=80) print("成绩***********") model.evaluate(x_test,y_test) class_name = ['u1','u2','u3', 'u4','u5','u6','u7','u8','u9','u10','u11','u12','u13',] predata = cv.imread(r'./data/5.pgm') predata = cv.cvtColor(predata, cv.COLOR_RGB2GRAY) reshaped_data = np.reshape(predata, (1, 112, 92)) #预测一个10以内的数组,他们代表对10种不同服装的可信度 predictions_single = model.predict(reshaped_data) max = numpy.argmax(predictions_single) #在列表中找到最大值 print(class_name[max-1]) plt.imshow(x_test[10],cmap=plt.cm.gray_r) plt.show()

分析一下代码:module taxi(clk_50M, reset,start,a,b,c,d,e,f,g,p,sel,pluse,led,key,set); // 端口的定义 input clk_50M,reset,start,pluse,key,set;//总的时钟信号,复位信号,开始信号 output[7:0] sel;//数码管的输出 output a,b,c,d,e,f,g,p; output led; wire led; wire [7:0]distance;//公里 wire [7:0] s;//秒 wire [7:0] m;//分 wire [7:0] fee;//费用 wire [3:0] rprice; wire [7:0]rfee; wire [31:0]q; wire [3:0]q0,q1,q2,q3,q4,q5,q6,q7; wire [3:0]DH,DL,MH,ML,SH,SL,FH,FL; wire distance_enable; //公里控制费用的信号 wire time_enable; //时间控制费用的信号 wire select_clk; //控制信号 wire hz1,hz2; //数码管的时钟 wire hz; //计数时钟 wire clk_key; wire timer; wire key_reg,rkey_reg,rkey_set; wire module_Flag,SPEED_Flag,flag,price_Flag,fee_Flag,beep_flag; //*模块的调用*// div_clk u0(.clk(clk_50M),.fs(1),.cko(hz));//调用计数分频模块 div_clk u1(.clk(clk_50M),.fs(500),.cko(hz1));//调用数码管分频模块 div_clk u2(.clk(clk_50M),.fs(1000),.cko(clk_key));//调用时钟消抖分频模块 control u3(.flag(flag),.distance_enable(distance_enable),.time_enable(time_enable), .select_clk(select_clk)); distancemokuai u4(.clk(hz),.flag(flag),.reset(reset),.distance(distance), .distance_enable(distance_enable),.module_Flag(module_Flag));//调用计程模块 timemokuai u5(.clk(hz),.reset(reset),.flag(flag),.s(s),.m(m), .time_enable(time_enable));//调用计时模块 feemokuai u6(.reset(reset),.price(rprice),.fee(fee),.s_fee(rfee),.select_clk(select_clk),.clk(hz));//调用计费模块 feeprice_set u7(.fee_Flag(fee_Flag),.price_Flag(price_Flag),.set(rkey_set),.reset(reset), .clk(clk_50M),.fee(rfee),.price(rprice)); scan_led u8 ( .clk(hz1), .DA(DH), .DB(DL), .DC(MH), .DD(ML), .DE(SH), .DF(SL), .DG(FH), .DH(FL), .a(a), .b(b), .c(c), .d(d), .e(e), .f(f), .g(g), .p(p), .sel(sel) ); count_in u9(.clk_in(pluse),.q(q),.timer(timer)); count_cnt u10(.clk(hz),.q(q),.q0(q0),.q1(q1),.q2(q2),.q3(q3),.q4(q4),.q5(q5),.q6(q6),.q7(q7), .timer(timer),.led(led),.beep_flag(beep_flag)); key_shake u11(.clk(clk_key), .key_in(key), .key_out(key_reg)); key_shake u12(.clk(clk_key), .key_in(start), .key_out(rkey_reg)); key_shake u13(.clk(clk_key), .key_in(set), .key_out(rkey_set)); key_control u14(.key(key_reg),.clk(clk_50M),.module_Flag(module_Flag),.SPEED_Flag(SPEED_Flag), .price_Flag(price_Flag),.fee_Flag(fee_Flag)); key_control2 u15(.start(rkey_reg),.clk(clk_50M),.flag(flag),.reset(reset),.module_Flag(module_Flag)); switch u16(.clk(clk_50M),.distance(distance),.s(s),.m(m), .q0(q0),.q1(q1),.q2(q2),.q3(q3),.q4(q4),.q5(q5),.q6(q6),.q7(q7), .fee(fee),.s_fee(rfee),.price(rprice),.module_Flag(module_Flag), .SPEED_Flag(SPEED_Flag),.fee_Flag(fee_Flag),.price_Flag(price_Flag), .DH(DH),.DL(DL),.MH(MH),.ML(ML),.SH(SH),.SL(SL),.FH(FH),.FL(FL)); endmodule//结束顶层模块

最新推荐

recommend-type

基于苍鹰优化算法的NGO支持向量机SVM参数c和g优化拟合预测建模(Matlab实现),苍鹰优化算法NGO优化支持向量机SVM的c和g参数做多输入单输出的拟合预测建模 程序内注释详细直接替数据就可以

基于苍鹰优化算法的NGO支持向量机SVM参数c和g优化拟合预测建模(Matlab实现),苍鹰优化算法NGO优化支持向量机SVM的c和g参数做多输入单输出的拟合预测建模。 程序内注释详细直接替数据就可以使用。 程序语言为matlab。 程序直接运行可以出拟合预测图,迭代优化图,线性拟合预测图,多个预测评价指标。 PS:以下效果图为测试数据的效果图,主要目的是为了显示程序运行可以出的结果图,具体预测效果以个人的具体数据为准。 2.由于每个人的数据都是独一无二的,因此无法做到可以任何人的数据直接替就可以得到自己满意的效果。 ,核心关键词:苍鹰优化算法; NGO优化; 支持向量机SVM; c和g参数; 多输入单输出拟合预测建模; Matlab程序; 拟合预测图; 迭代优化图; 线性拟合预测图; 预测评价指标。,MATLAB实现:基于苍鹰优化算法与NGO优化SVM的c和g参数多输入单输出预测建模工具
recommend-type

麻雀优化算法SSA优化广义神经网络GRNN的多特征输入单变量输出拟合预测模型(Matlab实现),麻雀优化算法SSA优化广义神经网络GRNN做多特征输入,单个因变量输出的拟合预测模型 程序内注释详细

麻雀优化算法SSA优化广义神经网络GRNN的多特征输入单变量输出拟合预测模型(Matlab实现),麻雀优化算法SSA优化广义神经网络GRNN做多特征输入,单个因变量输出的拟合预测模型。 程序内注释详细直接替数据就可以用。 程序语言为matlab。 ,关键词:麻雀优化算法(SSA);优化;广义神经网络(GRNN);多特征输入;单个因变量输出;拟合预测模型;Matlab程序语言;程序内注释。,SSA优化GRNN的多特征输入-单因变量输出拟合预测模型(基于Matlab程序)
recommend-type

2025最新辐射安全与防护培训考试题库及答案.docx

2025最新辐射安全与防护培训考试题库及答案.docx
recommend-type

高效数字电源方案:图腾柱无桥pfc技术,两相交错设计,5G一体化电源批量出货,宽电压输入与高效输出,功率覆盖至kW级别,高效数字电源方案,图腾柱无桥pfc,两相交错,5g一体化电电源上已批量出,输入1

高效数字电源方案:图腾柱无桥pfc技术,两相交错设计,5G一体化电源批量出货,宽电压输入与高效输出,功率覆盖至kW级别,高效数字电源方案,图腾柱无桥pfc,两相交错,5g一体化电电源上已批量出,输入175-265V,输出42-58V;输出效率97%,2kW 3kW都有 ,高效数字电源方案; 图腾柱无桥pfc; 两相交错; 5g一体化电电源; 批量出货; 宽输入电压范围; 高输出效率; 2kW和3kW功率。,"高效图腾柱无桥PFC电源方案,两相交错5G电平已大批量生产,宽输入范围输出高效率"
recommend-type

基于java+ssm+mysql的停车管理系统 源码+数据库+论文(高分毕设项目).zip

项目已获导师指导并通过的高分毕业设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 项目都经过严格调试,确保可以运行!可以放心下载 技术组成 语言:java 开发环境:idea 数据库:MySql8.0 部署环境:Tomcat(建议用 7.x 或者 8.x 版本),maven 数据库工具:navicat
recommend-type

Droste:探索Scala中的递归方案

标题和描述中都提到的“droste”和“递归方案”暗示了这个话题与递归函数式编程相关。此外,“droste”似乎是指一种递归模式或方案,而“迭代是人类,递归是神圣的”则是一种比喻,强调递归在编程中的优雅和力量。为了更好地理解这个概念,我们需要分几个部分来阐述。 首先,要了解什么是递归。在计算机科学中,递归是一种常见的编程技术,它允许函数调用自身来解决问题。递归方法可以将复杂问题分解成更小、更易于管理的子问题。在递归函数中,通常都会有一个基本情况(base case),用来结束递归调用的无限循环,以及递归情况(recursive case),它会以缩小问题规模的方式调用自身。 递归的概念可以追溯到数学中的递归定义,比如自然数的定义就是一个经典的例子:0是自然数,任何自然数n的后继者(记为n+1)也是自然数。在编程中,递归被广泛应用于数据结构(如二叉树遍历),算法(如快速排序、归并排序),以及函数式编程语言(如Haskell、Scala)中,它提供了强大的抽象能力。 从标签来看,“scala”,“functional-programming”,和“recursion-schemes”表明了所讨论的焦点是在Scala语言下函数式编程与递归方案。Scala是一种多范式的编程语言,结合了面向对象和函数式编程的特点,非常适合实现递归方案。递归方案(recursion schemes)是函数式编程中的一个高级概念,它提供了一种通用的方法来处理递归数据结构。 递归方案主要分为两大类:原始递归方案(原始-迭代者)和高级递归方案(例如,折叠(fold)/展开(unfold)、catamorphism/anamorphism)。 1. 原始递归方案(primitive recursion schemes): - 原始递归方案是一种模式,用于定义和操作递归数据结构(如列表、树、图等)。在原始递归方案中,数据结构通常用代数数据类型来表示,并配合以不变性原则(principle of least fixed point)。 - 在Scala中,原始递归方案通常通过定义递归类型类(如F-Algebras)以及递归函数(如foldLeft、foldRight)来实现。 2. 高级递归方案: - 高级递归方案进一步抽象了递归操作,如折叠和展开,它们是处理递归数据结构的强大工具。折叠允许我们以一种“下降”方式来遍历和转换递归数据结构,而展开则是“上升”方式。 - Catamorphism是将数据结构中的值“聚合成”单一值的过程,它是一种折叠操作,而anamorphism则是从单一值生成数据结构的过程,可以看作是展开操作。 - 在Scala中,高级递归方案通常与类型类(如Functor、Foldable、Traverse)和高阶函数紧密相关。 再回到“droste”这个词,它很可能是一个递归方案的实现或者是该领域内的一个项目名。根据文件名称“droste-master”,可以推测这可能是一个仓库,其中包含了与递归方案相关的Scala代码库或项目。 总的来说,递归方案和“droste”项目都属于高级函数式编程实践,它们为处理复杂的递归数据结构提供了一种系统化和模块化的手段。在使用Scala这类函数式语言时,递归方案能帮助开发者写出更简洁、可维护的代码,同时能够更安全、有效地处理递归结构的深层嵌套数据。
recommend-type

Simulink DLL性能优化:实时系统中的高级应用技巧

# 摘要 本文全面探讨了Simulink DLL性能优化的理论与实践,旨在提高实时系统中DLL的性能表现。首先概述了性能优化的重要性,并讨论了实时系统对DLL性能的具体要求以及性能评估的方法。随后,详细介绍了优化策略,包括理论模型和系统层面的优化。接着,文章深入到编码实践技巧,讲解了高效代码编写原则、DLL接口优化和
recommend-type

rust语言将文本内容转换为音频

Rust是一种系统级编程语言,它以其内存安全性和高性能而闻名。虽然Rust本身并不是专门用于音频处理的语言,但它可以与其他库配合来实现文本转音频的功能。通常这种任务需要借助外部库,比如`ncurses-rs`(控制台界面库)结合`wave`、`audio-kit-rs`等音频处理库,或者使用更专业的第三方库如`flac`、`opus`等进行编码。 以下是使用Rust进行文本转音频的一个简化示例流程: 1. 安装必要的音频处理库:首先确保已经安装了`cargo install flac wave`等音频编码库。 2. 导入库并创建音频上下文:导入`flac`库,创建一个可以写入FLAC音频
recommend-type

安卓蓝牙技术实现照明远程控制

标题《基于安卓蓝牙的远程控制照明系统》指向了一项技术实现,即利用安卓平台上的蓝牙通信能力来操控照明系统。这一技术实现强调了几个关键点:移动平台开发、蓝牙通信协议以及照明控制的智能化。下面将从这三个方面详细阐述相关知识点。 **安卓平台开发** 安卓(Android)是Google开发的一种基于Linux内核的开源操作系统,广泛用于智能手机和平板电脑等移动设备上。安卓平台的开发涉及多个层面,从底层的Linux内核驱动到用户界面的应用程序开发,都需要安卓开发者熟练掌握。 1. **安卓应用框架**:安卓应用的开发基于一套完整的API框架,包含多个模块,如Activity(界面组件)、Service(后台服务)、Content Provider(数据共享)和Broadcast Receiver(广播接收器)等。在远程控制照明系统中,这些组件会共同工作来实现用户界面、蓝牙通信和状态更新等功能。 2. **安卓生命周期**:安卓应用有着严格的生命周期管理,从创建到销毁的每个状态都需要妥善管理,确保应用的稳定运行和资源的有效利用。 3. **权限管理**:由于安卓应用对硬件的控制需要相应的权限,开发此类远程控制照明系统时,开发者必须在应用中声明蓝牙通信相关的权限。 **蓝牙通信协议** 蓝牙技术是一种短距离无线通信技术,被广泛应用于个人电子设备的连接。在安卓平台上开发蓝牙应用,需要了解和使用安卓提供的蓝牙API。 1. **蓝牙API**:安卓系统通过蓝牙API提供了与蓝牙硬件交互的能力,开发者可以利用这些API进行设备发现、配对、连接以及数据传输。 2. **蓝牙协议栈**:蓝牙协议栈定义了蓝牙设备如何进行通信,安卓系统内建了相应的协议栈来处理蓝牙数据包的发送和接收。 3. **蓝牙配对与连接**:在实现远程控制照明系统时,必须处理蓝牙设备间的配对和连接过程,这包括了PIN码验证、安全认证等环节,以确保通信的安全性。 **照明系统的智能化** 照明系统的智能化是指照明设备可以被远程控制,并且可以与智能设备进行交互。在本项目中,照明系统的智能化体现在能够响应安卓设备发出的控制指令。 1. **远程控制协议**:照明系统需要支持一种远程控制协议,安卓应用通过蓝牙通信发送特定指令至照明系统。这些指令可能包括开/关灯、调整亮度、改变颜色等。 2. **硬件接口**:照明系统中的硬件部分需要具备接收和处理蓝牙信号的能力,这通常通过特定的蓝牙模块和微控制器来实现。 3. **网络通信**:如果照明系统不直接与安卓设备通信,还可以通过Wi-Fi或其它无线技术进行间接通信。此时,照明系统内部需要有相应的网络模块和协议栈。 **相关技术实现示例** 在具体技术实现方面,假设我们正在开发一个名为"LightControl"的安卓应用,该应用能够让用户通过蓝牙与家中的智能照明灯泡进行交互。以下是几个关键步骤: 1. **用户界面设计**:设计简洁直观的用户界面,提供必要的按钮和指示灯,用于显示当前设备状态和发送控制指令。 2. **蓝牙操作实现**:编写代码实现搜索蓝牙设备、配对、建立连接及数据传输的功能。安卓应用需扫描周围蓝牙设备,待用户选择相应照明灯泡后,进行配对和连接,之后便可以发送控制指令。 3. **指令解码与执行**:照明设备端需要有对应的程序来监听蓝牙信号,当接收到特定格式的指令时,执行相应的控制逻辑,如开启/关闭电源、调节亮度等。 4. **安全性考虑**:确保通信过程中的数据加密和设备认证,防止未授权的访问或控制。 在技术细节上,开发者需要对安卓开发环境、蓝牙通信流程有深入的了解,并且在硬件端具备相应的编程能力,以保证应用与硬件的有效对接和通信。 通过上述内容的详细阐述,可以看出安卓蓝牙远程控制照明系统的实现是建立在移动平台开发、蓝牙通信协议和智能化硬件控制等多个方面的综合技术运用。开发者需要掌握的不仅仅是编程知识,还应包括对蓝牙技术的深入理解和对移动设备通信机制的全面认识。
recommend-type

【Simulink DLL集成】:零基础快速上手,构建高效模型策略

# 摘要 本文综合介绍了Simulink模型与DLL(动态链接库)的集成过程,详细阐述了从模型构建基础到DLL集成的高级策略。首先概述了Simulink模型构建的基本概念、参数化和仿真调试方法。接着,深入探讨了DLL的基础知识、在Simulink中的集成