一维cnn pytorch
时间: 2023-10-02 09:09:36 浏览: 126
一维卷积神经网络(1D CNN)可以用于处理一维时间序列数据,例如音频信号或文本序列。PyTorch的1D卷积层可以通过torch.nn.Conv1d()函数实现。以下是一个示例代码:
```python
import torch
import torch.nn as nn
class CNN1d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding):
super(CNN1d, self).__init__()
self.conv1d = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding)
self.relu = nn.ReLU()
self.maxpool1d = nn.MaxPool1d(kernel_size=2)
def forward(self, x):
x = self.conv1d(x)
x = self.relu(x)
x = self.maxpool1d(x)
return x
# 使用示例
model = CNN1d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1)
x = torch.randn(1, 1, 10) # 输入数据格式为(batch_size, channels, sequence_length)
output = model(x)
print(output.shape) # 输出数据格式为(batch_size, out_channels, sequence_length/2)
```
上述代码中,定义了一个CNN1d类,包含一个1D卷积层、ReLU激活函数和一个1D最大池化层。在forward函数中,输入数据x经过卷积、激活和池化操作后输出。示例中输入数据的格式为(batch_size, channels, sequence_length),其中batch_size为批次大小,channels为输入数据的通道数,sequence_length为输入数据的序列长度。输出数据的格式为(batch_size, out_channels, sequence_length/2),其中out_channels为输出通道数,sequence_length/2为池化操作后的序列长度。
阅读全文