使用pytorch写一维cnn
时间: 2023-03-01 10:14:46 浏览: 168
好的,下面是使用 PyTorch 实现一维卷积神经网络(1D CNN)的代码示例。
首先,导入需要的库:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
```
接下来,我们定义一个继承了 `nn.Module` 的自定义网络模型:
```python
class OneDimensionalCNN(nn.Module):
def __init__(self, input_channels, num_filters, filter_size, stride, padding, num_classes):
super(OneDimensionalCNN, self).__init__()
self.conv = nn.Conv1d(input_channels, num_filters, filter_size, stride, padding)
self.fc = nn.Linear(num_filters, num_classes)
def forward(self, x):
x = self.conv(x)
x = F.relu(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
接下来,我们可以实例化该网络模型,并将输入数据送入模型中进行预测:
```python
model = OneDimensionalCNN(input_channels=1, num_filters=16, filter_size=3, stride=1, padding=1, num_classes=10)
input = torch.randn(64, 1, 28)
output = model(input)
```
请注意,以上代码仅是示例,可能需要根据具体应用场景进行修改。
阅读全文