使用pytorch构建三层一维CNN+LSTM+attention网络模型
时间: 2023-05-27 19:03:01 浏览: 260
GestureRecognition-PyTorch:动作识别网络-CNN + LSTM
5星 · 资源好评率100%
以下是使用PyTorch构建3层1D CNN LSTM Attention网络模型的代码示例:
```python
import torch.nn as nn
import torch.nn.functional as F
class CNN_LSTM_Attention(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, num_layers, dropout_prob, kernel_size, stride):
super(CNN_LSTM_Attention, self).__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.num_layers = num_layers
self.dropout_prob = dropout_prob
self.kernel_size = kernel_size
self.stride = stride
self.conv_layers = nn.ModuleList()
self.conv_layers.append(nn.Conv1d(in_channels=input_dim, out_channels=hidden_dim, kernel_size=kernel_size, stride=stride))
self.conv_layers.append(nn.Conv1d(in_channels=hidden_dim, out_channels=hidden_dim, kernel_size=kernel_size, stride=stride))
self.conv_layers.append(nn.Conv1d(in_channels=hidden_dim, out_channels=hidden_dim, kernel_size=kernel_size, stride=stride))
self.lstm = nn.LSTM(hidden_dim, hidden_size=hidden_dim, num_layers=num_layers, bidirectional=True, batch_first=True, dropout=dropout_prob)
self.attention_layer = nn.Linear(hidden_dim*2, 1, bias=False)
self.output_layer = nn.Linear(hidden_dim*2, output_dim)
def forward(self, x):
batch_size, seq_len, num_channels = x.size()
x = x.permute(0, 2, 1)
for conv_layer in self.conv_layers:
x = conv_layer(x)
x = F.relu(x)
x = F.max_pool1d(x, kernel_size=self.kernel_size, stride=self.stride)
x = x.permute(0, 2, 1)
# LSTM layer
h_0 = torch.zeros(self.num_layers*2, batch_size, self.hidden_dim).to(device)
c_0 = torch.zeros(self.num_layers*2, batch_size, self.hidden_dim).to(device)
lstm_out, (h_n, c_n) = self.lstm(x, (h_0, c_0))
lstm_out = lstm_out.view(batch_size, seq_len, self.hidden_dim*2)
# Attention layer
attention_weights = F.softmax(self.attention_layer(lstm_out), dim=1)
attention_weights = attention_weights.permute(0,2,1)
attention_weights = F.dropout(attention_weights, p=self.dropout_prob, training=self.training)
output = torch.bmm(attention_weights, lstm_out).squeeze()
# Output layer
output = self.output_layer(output)
return output
```
在上面的代码中,我们首先定义了类`CNN_LSTM_Attention`,它继承自PyTorch的`nn.Module`基类。该类的主要部分包括三层1D卷积层、一层双向LSTM层、一层Attention层和一层输出层。
在`__init__`函数中,我们定义了输入维度`input_dim`、隐藏维度`hidden_dim`、输出维度`output_dim`、层数`num_layers`、dropout概率`dropout_prob`、卷积核大小`kernel_size`和步长`stride`。我们使用`nn.ModuleList`来保存卷积层。
在`forward`函数中,我们首先对数据进行转置,以便将序列长度放在第二维,这将便于进行卷积操作。我们然后依次通过三层1D卷积层,每层都是一个卷积层,一个ReLU激活层和一个最大池化层。
接下来,我们将数据传递给双向LSTM层,这将返回一个输出张量和一个元组,其中包含LSTM层的最后一个状态和单元状态。我们将输出张量重塑为(batch_size, seq_len, hidden_dim*2)的形状。
在Attention层中,我们首先将LSTM层的输出传递给一个线性层,以产生注意力权重。将注意力权重限制为0到1之间,以便它们可以被解释为加权和。我们随机丢弃注意力权重中的一部分,以减少过拟合,然后将它们与LSTM层的输出相乘,以得到加权和。最后,我们将加权和传递给输出层来生成最终的预测。
通过使用此三层1D CNN LSTM Attention网络,我们可以实现一种有效的序列到序列的建模方法,并应用于多种语音识别、自然语言处理、视频分析等场景中。
阅读全文