使用pytorch构建一维三层CNN网络
时间: 2023-05-26 07:06:07 浏览: 98
下面是使用PyTorch构建一维三层CNN网络的示例代码。
```python
import torch.nn as nn
import torch.nn.functional as F
class MyCNN(nn.Module):
def __init__(self):
super(MyCNN, self).__init__()
# three convolutional layers with filters of size 3, 5, and 7
self.conv1 = nn.Conv1d(1, 16, kernel_size=3)
self.conv2 = nn.Conv1d(16, 32, kernel_size=5)
self.conv3 = nn.Conv1d(32, 64, kernel_size=7)
# max pooling layer
self.pool = nn.MaxPool1d(2)
# fully connected layers
self.fc1 = nn.Linear(64*10, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
# pass input through convolutional layers
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
x = F.relu(self.conv3(x))
x = self.pool(x)
# flatten the output
x = x.view(-1, 64*10)
# pass through fully connected layers
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
```
这是一个简单的3层CNN网络,输入数据是一维的。网络的第一层卷积层包含16个3个长度的滤波器,第二层卷积层包含32个5个长度的滤波器,第三层卷积层包含64个7个长度的滤波器。每个卷积层之后都有一个最大池化层,将特征图的大小减半。最后,两个全连接层将特征映射到输出类别。
阅读全文