CNN+lstm进行图像回归预测,请给出pytorch代码
时间: 2024-09-06 13:04:21 浏览: 96
CNN (卷积神经网络) 和 LSTM (长短时记忆网络) 结合用于图像回归预测是一种常见的深度学习策略,通常在需要理解复杂时空序列数据的情况下,比如视频帧中的物体运动预测。以下是使用PyTorch实现这种模型的一个简化示例:
```python
import torch
import torch.nn as nn
from torch.autograd import Variable
# 定义一个简单的卷积层 + LSTM 层结构
class ImageRegressor(nn.Module):
def __init__(self, in_channels, conv_layers, lstm_units, output_size):
super(ImageRegressor, self).__init__()
# 卷积部分
self.conv_layers = nn.Sequential(
*[
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride)
for in_channels, out_channels, kernel_size, stride in conv_layers
],
nn.Flatten(), # 将二维特征展平成一维
nn.Linear(conv_layers[-1][0], 256), # 全连接层
nn.ReLU()
)
# LSTM 部分
self.lstm = nn.LSTM(256, lstm_units, batch_first=True)
# 输出层
self.fc_out = nn.Linear(lstm_units, output_size)
def forward(self, x):
# 应对输入是Variable的情况
if not isinstance(x, Variable):
x = Variable(x)
x = self.conv_layers(x)
x, _ = self.lstm(x) # 只保留最后一个时间步的隐藏状态
x = self.fc_out(x[:, -1, :]) # 取出最后时刻的输出作为预测值
return x
# 使用示例
# 假设我们有3通道的图像,3个卷积层配置,每个LSTM单元128,输出是一个浮点数
conv_layers = [(3, 32, 3, 1), (32, 64, 3, 1), (64, 128, 3, 1)]
lstm_units = 128
output_size = 1
model = ImageRegressor(in_channels=3, conv_layers=conv_layers, lstm_units=lstm_units, output_size=output_size)
# 假设input_data是训练样本(BxHxWxC),output_data是对应的标签
optimizer = torch.optim.Adam(model.parameters()) # 假设使用Adam优化器
for epoch in range(num_epochs): # num_epochs是你想训练的轮数
model.train() # 设置模型为训练模式
outputs = model(input_data)
loss = nn.MSELoss()(outputs, output_data) # 对回归任务使用MSE Loss
optimizer.zero_grad() # 清空梯度
loss.backward()
阅读全文