fasterrcnn
时间: 2023-08-17 16:07:02 浏览: 107
一文读懂Faster RCNN - 知乎.pdf
5星 · 资源好评率100%
Fast R-CNN(Faster R-CNN的前身)是一种用于目标检测任务的深度学习模型。它是在R-CNN和Fast R-CNN的基础上发展而来的。Faster R-CNN是由Ross Girshick在2015年提出的,它的主要贡献是引入了一种称为Region Proposal Network(RPN)的新型网络结构。
Faster R-CNN的整体架构包含两个主要部分:特征提取网络和RPN。特征提取网络可以是任何常见的卷积神经网络,如VGG、ResNet等。这个网络负责从输入图像中提取特征图,用于后续的目标检测任务。
RPN是Faster R-CNN的关键创新点,它被用来生成候选目标框(或称为锚框),这些候选框将被用于检测和分类目标。RPN在特征提取网络的输出上滑动窗口,并通过一个小型的卷积神经网络预测目标框的边界框回归信息和目标框的置信度分数。这些预测信息被用来筛选出具有高置信度的候选框,并作为输入送入后续的目标分类网络进行分类。
通过引入RPN,Faster R-CNN相比于之前的目标检测方法更加高效和准确。RPN可以共享特征提取网络的计算,从而加速了目标检测的速度,同时它也能够更好地适应不同尺度和形状的目标。
总的来说,Faster R-CNN是一种有效的目标检测模型,它通过引入Region Proposal Network实现了更快速和准确的目标检测。
阅读全文