pytorch main函数框架
时间: 2023-12-04 15:05:03 浏览: 131
以下是一个PyTorch的主函数框架,可以用于训练和测试神经网络模型:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
# 定义神经网络模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 定义网络结构
def forward(self, x):
# 定义前向传播过程
return x
# 定义训练函数
def train(model, train_loader, optimizer, criterion):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# 定义测试函数
def test(model, test_loader, criterion):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
test_loss, correct, len(test_loader.dataset), accuracy))
# 加载数据集
train_loader = DataLoader(...)
test_loader = DataLoader(...)
# 初始化模型、损失函数和优化器
model = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# 训练和测试模型
for epoch in range(1, 11):
train(model, train_loader, optimizer, criterion)
test(model, test_loader, criterion)
```
阅读全文