from sklearn.linear_model import LogisticRegression from sklearn import metrics import numpy as np import pandas as pd data = pd.read_csv( 'final_data1.csv') Y = data.y X = data.drop('y', axis=1) xmin = X.min(axis=0) xmax = X.max(axis=0) X_norm = (X-xmin)/(xmax-xmin) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X_norm, Y, test_size=0.2, random_state=42) clf = LogisticRegression(random_state=0,multi_class='multinomial') clf.fit(X_norm,Y) y_pred= clf.predict(X_test) y_pred= np.round(y_pred) 给出使用网格搜索(GridSearchCV)调上述代码的超参数的代码

时间: 2024-01-05 10:02:33 浏览: 150
PDF

LogisticRegression 参数详解

star5星 · 资源好评率100%
要使用网格搜索(GridSearchCV)调整上述代码的超参数,可以按照以下步骤进行: ```python from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV import numpy as np import pandas as pd # 读取数据 data = pd.read_csv('final_data1.csv') Y = data.y X = data.drop('y', axis=1) xmin = X.min(axis=0) xmax = X.max(axis=0) X_norm = (X - xmin) / (xmax - xmin) # 划分训练集和测试集 from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X_norm, Y, test_size=0.2, random_state=42) # 定义超参数的候选值 param_grid = { 'C': [0.1, 1.0, 10.0], # 正则化强度的候选值 'penalty': ['l1', 'l2'], # 正则化类型的候选值 'solver': ['newton-cg', 'sag', 'saga', 'lbfgs'] # 求解器的候选值 } # 创建Logistic回归模型 model = LogisticRegression(random_state=0, multi_class='multinomial') # 使用网格搜索寻找最佳超参数组合 grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5) grid_search.fit(X_train, y_train) # 输出最佳超参数组合 print("Best parameters: ", grid_search.best_params_) # 使用最佳超参数组合的模型进行预测 best_model = grid_search.best_estimator_ y_pred = best_model.predict(X_test) y_pred = np.round(y_pred) ``` 在上述代码中,我们首先读取数据并进行归一化处理,然后划分训练集和测试集。接下来,我们定义了超参数的候选值(C、penalty和solver),创建了Logistic回归模型。然后,使用GridSearchCV进行网格搜索,寻找最佳的超参数组合。通过交叉验证(cv=5),它会尝试所有可能的超参数组合,并返回最佳组合。最后,我们使用最佳超参数组合的模型进行预测。 你可以根据自己的需求修改超参数的候选值,并根据实际情况选择合适的参数范围。
阅读全文

相关推荐

import numpy as np import pandas as pd from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt from termcolor import colored as cl import itertools from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier from sklearn.neural_network import MLPClassifier from sklearn.ensemble import VotingClassifier # 定义模型评估函数 def evaluate_model(y_true, y_pred): accuracy = accuracy_score(y_true, y_pred) precision = precision_score(y_true, y_pred, pos_label='Good') recall = recall_score(y_true, y_pred, pos_label='Good') f1 = f1_score(y_true, y_pred, pos_label='Good') print("准确率:", accuracy) print("精确率:", precision) print("召回率:", recall) print("F1 分数:", f1) # 读取数据集 data = pd.read_csv('F:\数据\大学\专业课\模式识别\大作业\数据集1\data clean Terklasifikasi baru 22 juli 2015 all.csv', skiprows=16, header=None) # 检查数据集 print(data.head()) # 划分特征向量和标签 X = data.iloc[:, :-1] y = data.iloc[:, -1] # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 6. XGBoost xgb = XGBClassifier(max_depth=4) y_test = np.array(y_test, dtype=int) xgb.fit(X_train, y_train) xgb_pred = xgb.predict(X_test) print("\nXGBoost评估结果:") evaluate_model(y_test, xgb_pred)

报错ValueError: np.nan is an invalid document, expected byte or unicode string. 怎么修改import pandas as pd from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # 读取电影评论数据集 data = pd.read_csv(r'D:\shujukexue\review_data.csv', encoding='gbk') x = v.fit_transform(df['eview'].apply(lambda x: np.str_(x))) # 分割数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(data['review'], data['sentiment'], test_size=0.2, random_state=42) # 创建CountVectorizer对象进行词频统计和向量化 count_vectorizer = CountVectorizer() X_train_count = count_vectorizer.fit_transform(X_train) X_test_count = count_vectorizer.transform(X_test) # 创建TfidfVectorizer对象进行TF-IDF计算和向量化 tfidf_vectorizer = TfidfVectorizer() X_train_tfidf = tfidf_vectorizer.fit_transform(X_train) X_test_tfidf = tfidf_vectorizer.transform(X_test) # 创建逻辑回归分类器并在CountVectorizer上进行训练和预测 classifier_count = LogisticRegression() classifier_count.fit(X_train_count, y_train) y_pred_count = classifier_count.predict(X_test_count) accuracy_count = accuracy_score(y_test, y_pred_count) print("Accuracy using CountVectorizer:", accuracy_count) # 创建逻辑回归分类器并在TfidfVectorizer上进行训练和预测 classifier_tfidf = LogisticRegression() classifier_tfidf.fit(X_train_tfidf, y_train) y_pred_tfidf = classifier_tfidf.predict(X_test_tfidf) accuracy_tfidf = accuracy_score(y_test, y_pred_tfidf) print("Accuracy using TfidfVectorizer:", accuracy_tfidf)

from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from imblearn.combine import SMOTETomek from sklearn.metrics import auc, roc_curve, roc_auc_score from sklearn.feature_selection import SelectFromModel import pandas as pd import numpy as np import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix #1、数据输入 df_table_all = pd.read_csv(r"D:\trainafter.csv",index_col=0) #2、目标和特征区分 X = df_table_all.drop(["Y"],axis=1).values Y = np.array(df_table_all["Y"]) #3、按比例切割数据 X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.3,random_state=0) #4、样本平衡, st= SMOTETomek() X_train_st,Y_train_st = st.fit_resample(X_train,Y_train) #4、特征选择: #创建特征选择模型 sfm = SelectFromModel(LogisticRegression(penalty='l1',C=1.0,solver="liblinear")) #训练特征选择模型 sfm.fit(X_train,Y_train) #讲数据转换,剩下重要的特征 X_train_tiny = sfm.transform(X_train) X_test_tiny = sfm.transform(X_test) #5、创建模型 model = LogisticRegression(penalty='l1',C=1.0,solver="liblinear") model.fit(X_train_st_tiny,Y_train_st) #6、预测 y_pred = model.predict_proba(X_test_st_tiny) y_cate = model.predict(X_test_st_tiny) c=confusion_matrix(Y_test,y_cate) print(c) def report_auc(y_true,y_prob,title,out_name="",lw=2): fpr,tpr,_=roc_curve(y_true,y_prob,pos_label=1) print(fpr) print(tpr) plt.figure() plt.plot(fpr,tpr,color="darkorange",lw=lw,lable="ROC curve") plt.plot([0,1],[0,1],color="yellow",lw=lw,linestyle="--") plt.xlim([0,1]) plt.ylim([0,1.05]) plt.title(title) plt.legend(loc='lower right') plt.show(0) plt.savefig(r"d:\LR"+out_name,dpi=800) plt.close("all") report_auc(Y_test,y_pred[:,1],"Logistic with L1 panetly",'LG')

zip

最新推荐

recommend-type

基于纯verilogFPGA的双线性差值视频缩放 功能:利用双线性差值算法,pc端HDMI输入视频缩小或放大,然后再通过HDMI输出显示,可以任意缩放 缩放模块仅含有ddr ip,手写了 ram,f

基于纯verilogFPGA的双线性差值视频缩放 功能:利用双线性差值算法,pc端HDMI输入视频缩小或放大,然后再通过HDMI输出显示,可以任意缩放。 缩放模块仅含有ddr ip,手写了 ram,fifo 代码,可以较为轻松地移植到其他平台。 硬件平台:易灵思 ti60f225 EDA平台:efinity
recommend-type

【java毕业设计】智慧社区智慧社区管理员密码修改与重置系统(源代码+论文+PPT模板).zip

zip里包含源码+论文+PPT,有java环境就可以运行起来 ,功能说明: 文档开篇阐述了随着计算机技术、通信技术和网络技术的快速发展,智慧社区门户网站的建设成为了可能,并被视为21世纪信息产业的主要发展方向之一 强调了网络信息管理技术、数字化处理技术和数字式信息资源建设在国际竞争中的重要性。 指出了智慧社区门户网站系统的编程语言为Java,数据库为MYSQL,并实现了新闻资讯、社区共享、在线影院等功能。 系统设计与功能: 文档详细描述了系统的后台管理功能,包括系统管理模块、新闻资讯管理模块、公告管理模块、社区影院管理模块、会员上传下载管理模块以及留言管理模块。 系统管理模块:允许管理员重新设置密码,记录登录日志,确保系统安全。 新闻资讯管理模块:实现新闻资讯的添加、删除、修改,确保主页新闻部分始终显示最新的文章。 公告管理模块:类似于新闻资讯管理,但专注于主页公告的后台管理。 社区影院管理模块:管理所有视频的添加、删除、修改,包括影片名、导演、主演、片长等信息。 会员上传下载管理模块:审核与删除会员上传的文件。 留言管理模块:回复与删除所有留言,确保系统内的留言得到及时处理。
recommend-type

基于51单片机的一个智能密码锁设计.7z

基于51单片机的一个智能密码锁设计.7z
recommend-type

《STM32单片机+2x180-SG90+2x360-SG90+OLED屏幕》源代码

《基于STM32的舵机控制系统设计》毕业设计项目 1.STM32单片机+2x180_SG90+2x360_SG90+OLED屏幕 2.OLED屏幕显示舵机的方向、速度、角度各项数据 3.按键1:控制180度舵机正向转动角度      4.按键2:控制180度舵机反向转动角度 5.按键3:控制360度舵机正向转动并且控制舵机速度      6.按键4:控制360度舵机反向转动并且控制舵机速度 7.代码里面含有注释 8.硬件实物接上线就能直接运行
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依